Got Ecat Working

This commit is contained in:
Nicolas Trimborn 2021-07-31 17:48:46 +02:00
parent 2f5a303a0a
commit 7576bf10e9
558 changed files with 332276 additions and 0 deletions

View File

@ -0,0 +1,22 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Atmel Studio Solution File, Format Version 11.00
VisualStudioVersion = 14.0.23107.0
MinimumVisualStudioVersion = 10.0.40219.1
Project("{54F91283-7BC4-4236-8FF9-10F437C3AD48}") = "2_Motor_Master", "2_Motor_Master\2_Motor_Master.cproj", "{DCE6C7E3-EE26-4D79-826B-08594B9AD897}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|ARM = Debug|ARM
Release|ARM = Release|ARM
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{DCE6C7E3-EE26-4D79-826B-08594B9AD897}.Debug|ARM.ActiveCfg = Debug|ARM
{DCE6C7E3-EE26-4D79-826B-08594B9AD897}.Debug|ARM.Build.0 = Debug|ARM
{DCE6C7E3-EE26-4D79-826B-08594B9AD897}.Release|ARM.ActiveCfg = Release|ARM
{DCE6C7E3-EE26-4D79-826B-08594B9AD897}.Release|ARM.Build.0 = Release|ARM
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,6 @@
<environment>
<configurations/>
<device-packs>
<device-pack device="ATSAME51J19A" name="SAME51_DFP" vendor="Atmel" version="1.1.139"/>
</device-packs>
</environment>

View File

@ -0,0 +1,245 @@
<package xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" schemaVersion="1.0" xs:noNamespaceSchemaLocation="PACK.xsd">
<vendor>Atmel</vendor>
<name>Motor_Master</name>
<description>Project generated by Atmel Start</description>
<url>http://start.atmel.com/</url>
<releases>
<release version="1.0.1">Initial version</release>
</releases>
<taxonomy>
<description Cclass="AtmelStart" generator="AtmelStart">Configuration Files generated by Atmel Start</description>
</taxonomy>
<generators>
<generator id="AtmelStart">
<description>Atmel Start</description>
<select Dname="ATSAME51J19A" Dvendor="Atmel:3"/>
<command>http://start.atmel.com/</command>
<files>
<file category="generator" name="atmel_start_config.atstart"/>
<file attr="template" category="other" name="AtmelStart.env_conf" select="Environment configuration"/>
</files>
</generator>
</generators>
<conditions>
<condition id="CMSIS Device Startup">
<description>Dependency on CMSIS core and Device Startup components</description>
<require Cclass="CMSIS" Cgroup="CORE" Cversion="5.1.2"/>
<require Cclass="Device" Cgroup="Startup" Cversion="1.1.0"/>
</condition>
<condition id="ARMCC, GCC, IAR">
<require Dname="ATSAME51J19A"/>
<accept Tcompiler="ARMCC"/>
<accept Tcompiler="GCC"/>
<accept Tcompiler="IAR"/>
</condition>
<condition id="GCC">
<require Dname="ATSAME51J19A"/>
<accept Tcompiler="GCC"/>
</condition>
</conditions>
<components generator="AtmelStart">
<component Cclass="AtmelStart" Cgroup="Framework" Cversion="1.0.0" condition="CMSIS Device Startup">
<description>Atmel Start Framework</description>
<RTE_Components_h>#define ATMEL_START</RTE_Components_h>
<files>
<file category="doc" condition="ARMCC, GCC, IAR" name="hal/documentation/adc_sync.rst"/>
<file category="doc" condition="ARMCC, GCC, IAR" name="hal/documentation/custom_logic.rst"/>
<file category="doc" condition="ARMCC, GCC, IAR" name="hal/documentation/evsys.rst"/>
<file category="doc" condition="ARMCC, GCC, IAR" name="hal/documentation/ext_irq.rst"/>
<file category="doc" condition="ARMCC, GCC, IAR" name="hal/documentation/pwm.rst"/>
<file category="doc" condition="ARMCC, GCC, IAR" name="hal/documentation/quad_spi_sync.rst"/>
<file category="doc" condition="ARMCC, GCC, IAR" name="hal/documentation/spi_master_async.rst"/>
<file category="doc" condition="ARMCC, GCC, IAR" name="hal/documentation/spi_master_sync.rst"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_atomic.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_cache.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_custom_logic.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_delay.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_evsys.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_ext_irq.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_gpio.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_init.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_io.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_qspi_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_sleep.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_spi_m_async.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_spi_m_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_adc_dma.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_cmcc.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_core.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_custom_logic.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_delay.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_dma.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_evsys.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_ext_irq.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_gpio.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_i2c_m_async.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_i2c_m_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_i2c_s_async.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_i2c_s_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_init.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_irq.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_qspi.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_qspi_dma.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_qspi_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_ramecc.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_sleep.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi_async.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi_dma.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_usart.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_atomic.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_cache.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_delay.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_evsys.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_gpio.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_init.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_io.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_qspi_sync.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_sleep.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/compiler.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/err_codes.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/events.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/utils.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/utils_assert.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/utils_event.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/utils_increment_macro.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/utils_list.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/utils_repeat_macro.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/utils/src/utils_assert.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/utils/src/utils_event.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/utils/src/utils_list.c"/>
<file category="source" condition="GCC" name="hal/utils/src/utils_syscalls.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_ac_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_adc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_aes_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_can_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_ccl_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_cmcc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_dac_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_dmac_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_dsu_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_eic_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_evsys_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_freqm_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_gclk_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_hmatrixb_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_i2s_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_icm_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_mclk_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_nvmctrl_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_osc32kctrl_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_oscctrl_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_pac_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_pcc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_pdec_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_pm_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_port_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_qspi_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_ramecc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_rstc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_rtc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_sdhc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_sercom_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_supc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_tc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_tcc_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_trng_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_usb_e51.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hri/hri_wdt_e51.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="main.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="driver_init.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="driver_init.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="atmel_start_pins.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="examples/driver_examples.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="examples/driver_examples.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_adc_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hal_pwm.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_adc_async.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_adc_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_missing_features.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_pwm.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_reset.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi_m_async.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi_m_dma.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi_m_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi_s_async.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_spi_s_sync.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_timer.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_usart_async.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/include/hpl_usart_sync.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_adc_sync.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_ext_irq.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_pwm.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_spi_m_async.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hal/src/hal_spi_m_sync.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hal/utils/include/parts.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/adc/hpl_adc.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hpl/adc/hpl_adc_base.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/ccl/hpl_ccl.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/cmcc/hpl_cmcc.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/core/hpl_core_m4.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hpl/core/hpl_core_port.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/core/hpl_init.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/dmac/hpl_dmac.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/eic/hpl_eic.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/evsys/hpl_evsys.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/gclk/hpl_gclk.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hpl/gclk/hpl_gclk_base.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/mclk/hpl_mclk.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/osc32kctrl/hpl_osc32kctrl.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/oscctrl/hpl_oscctrl.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/pm/hpl_pm.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hpl/pm/hpl_pm_base.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hpl/port/hpl_gpio_base.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/qspi/hpl_qspi.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/ramecc/hpl_ramecc.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/sercom/hpl_sercom.c"/>
<file category="source" condition="ARMCC, GCC, IAR" name="hpl/tcc/hpl_tcc.c"/>
<file category="header" condition="ARMCC, GCC, IAR" name="hpl/tcc/hpl_tcc.h"/>
<file category="header" condition="ARMCC, GCC, IAR" name="atmel_start.h"/>
<file category="source" condition="ARMCC, GCC, IAR" name="atmel_start.c"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_adc_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_ccl_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_cmcc_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_dmac_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_eic_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_evsys_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_gclk_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_mclk_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_osc32kctrl_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_oscctrl_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_port_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_qspi_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_sercom_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/hpl_tcc_config.h"/>
<file attr="config" category="header" condition="ARMCC, GCC, IAR" name="config/peripheral_clk_config.h"/>
<file category="include" condition="ARMCC, GCC, IAR" name=""/>
<file category="include" condition="ARMCC, GCC, IAR" name="config"/>
<file category="include" condition="ARMCC, GCC, IAR" name="examples"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hal/include"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hal/utils/include"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/adc"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/ccl"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/cmcc"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/core"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/dmac"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/eic"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/evsys"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/gclk"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/mclk"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/osc32kctrl"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/oscctrl"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/pm"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/port"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/qspi"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/ramecc"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/sercom"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hpl/tcc"/>
<file category="include" condition="ARMCC, GCC, IAR" name="hri"/>
<file category="include" condition="ARMCC, GCC, IAR" name=""/>
</files>
</component>
</components>
</package>

View File

@ -0,0 +1,169 @@
<?xml version="1.0" encoding="utf-8"?>
<Store xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="AtmelPackComponentManagement">
<ProjectComponents>
<ProjectComponent z:Id="i1" xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
<CApiVersion></CApiVersion>
<CBundle></CBundle>
<CClass>CMSIS</CClass>
<CGroup>CORE</CGroup>
<CSub></CSub>
<CVariant></CVariant>
<CVendor>ARM</CVendor>
<CVersion>5.1.2</CVersion>
<DefaultRepoPath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs</DefaultRepoPath>
<DependentComponents xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays" />
<Description></Description>
<Files xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\arm\CMSIS\5.4.0\CMSIS\Documentation\Core\html\index.html</AbsolutePath>
<Attribute></Attribute>
<Category>doc</Category>
<Condition></Condition>
<FileContentHash i:nil="true" />
<FileVersion></FileVersion>
<Name>CMSIS/Documentation/Core/html/index.html</Name>
<SelectString></SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\arm\CMSIS\5.4.0\CMSIS\Core\Include\</AbsolutePath>
<Attribute></Attribute>
<Category>include</Category>
<Condition></Condition>
<FileContentHash i:nil="true" />
<FileVersion></FileVersion>
<Name>CMSIS/Core/Include/</Name>
<SelectString></SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
</Files>
<PackName>CMSIS</PackName>
<PackPath>C:/Program Files (x86)/Atmel/Studio/7.0/Packs/arm/CMSIS/5.4.0/ARM.CMSIS.pdsc</PackPath>
<PackVersion>5.4.0</PackVersion>
<PresentInProject>true</PresentInProject>
<ReferenceConditionId>ARMv6_7_8-M Device</ReferenceConditionId>
<RteComponents xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:string></d4p1:string>
</RteComponents>
<Status>Resolved</Status>
<VersionMode>Fixed</VersionMode>
<IsComponentInAtProject>true</IsComponentInAtProject>
</ProjectComponent>
<ProjectComponent z:Id="i2" xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
<CApiVersion></CApiVersion>
<CBundle></CBundle>
<CClass>Device</CClass>
<CGroup>Startup</CGroup>
<CSub></CSub>
<CVariant></CVariant>
<CVendor>Atmel</CVendor>
<CVersion>1.1.0</CVersion>
<DefaultRepoPath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs</DefaultRepoPath>
<DependentComponents xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:anyType z:Ref="i1" />
</DependentComponents>
<Description></Description>
<Files xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\atmel\SAME51_DFP\1.1.139\include</AbsolutePath>
<Attribute></Attribute>
<Category>include</Category>
<Condition>C</Condition>
<FileContentHash i:nil="true" />
<FileVersion></FileVersion>
<Name>include</Name>
<SelectString></SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\atmel\SAME51_DFP\1.1.139\include\sam.h</AbsolutePath>
<Attribute></Attribute>
<Category>header</Category>
<Condition>C</Condition>
<FileContentHash>XMaK1d/cPjfkz9uhhbivKQ==</FileContentHash>
<FileVersion></FileVersion>
<Name>include/sam.h</Name>
<SelectString></SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\atmel\SAME51_DFP\1.1.139\templates\main.c</AbsolutePath>
<Attribute>template</Attribute>
<Category>source</Category>
<Condition>C Exe</Condition>
<FileContentHash>xl79J6QpFGqtM/Qtpg0F0A==</FileContentHash>
<FileVersion></FileVersion>
<Name>templates/main.c</Name>
<SelectString>Main file (.c)</SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\atmel\SAME51_DFP\1.1.139\templates\main.cpp</AbsolutePath>
<Attribute>template</Attribute>
<Category>source</Category>
<Condition>C Exe</Condition>
<FileContentHash>Ny5KJsXabDpl2RTnRgbE6w==</FileContentHash>
<FileVersion></FileVersion>
<Name>templates/main.cpp</Name>
<SelectString>Main file (.cpp)</SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\atmel\SAME51_DFP\1.1.139\gcc\system_same51.c</AbsolutePath>
<Attribute>config</Attribute>
<Category>source</Category>
<Condition>GCC Exe</Condition>
<FileContentHash>v7vRHd9Pvwl1+DlDaLQIbw==</FileContentHash>
<FileVersion></FileVersion>
<Name>gcc/system_same51.c</Name>
<SelectString></SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\atmel\SAME51_DFP\1.1.139\gcc\gcc\startup_same51.c</AbsolutePath>
<Attribute>config</Attribute>
<Category>source</Category>
<Condition>GCC Exe</Condition>
<FileContentHash>mafnkmyCtWo0nu8ziBh5SQ==</FileContentHash>
<FileVersion></FileVersion>
<Name>gcc/gcc/startup_same51.c</Name>
<SelectString></SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\atmel\SAME51_DFP\1.1.139\gcc\gcc\same51j19a_flash.ld</AbsolutePath>
<Attribute>config</Attribute>
<Category>linkerScript</Category>
<Condition>GCC Exe</Condition>
<FileContentHash>SLnDjqsyUf2AjC7OxAcJEA==</FileContentHash>
<FileVersion></FileVersion>
<Name>gcc/gcc/same51j19a_flash.ld</Name>
<SelectString></SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
<d4p1:anyType i:type="FileInfo">
<AbsolutePath>C:/Program Files (x86)\Atmel\Studio\7.0\Packs\atmel\SAME51_DFP\1.1.139\gcc\gcc\same51j19a_sram.ld</AbsolutePath>
<Attribute>config</Attribute>
<Category>other</Category>
<Condition>GCC Exe</Condition>
<FileContentHash>nDmXxd70aU/IfVKIEJ0keg==</FileContentHash>
<FileVersion></FileVersion>
<Name>gcc/gcc/same51j19a_sram.ld</Name>
<SelectString></SelectString>
<SourcePath></SourcePath>
</d4p1:anyType>
</Files>
<PackName>SAME51_DFP</PackName>
<PackPath>C:/Program Files (x86)/Atmel/Studio/7.0/Packs/atmel/SAME51_DFP/1.1.139/Atmel.SAME51_DFP.pdsc</PackPath>
<PackVersion>1.1.139</PackVersion>
<PresentInProject>true</PresentInProject>
<ReferenceConditionId>ATSAME51J19A</ReferenceConditionId>
<RteComponents xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:string></d4p1:string>
</RteComponents>
<Status>Resolved</Status>
<VersionMode>Fixed</VersionMode>
<IsComponentInAtProject>true</IsComponentInAtProject>
</ProjectComponent>
</ProjectComponents>
</Store>

View File

@ -0,0 +1,54 @@
/**
* \file
*
* \brief Autogenerated API include file for the Atmel Configuration Management Engine (ACME)
*
* Copyright (c) 2012 Atmel Corporation. All rights reserved.
*
* \acme_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \acme_license_stop
*
* Project: 2_Motor_Master
* Target: ATSAME51J19A
*
**/
#ifndef RTE_COMPONENTS_H
#define RTE_COMPONENTS_H
#define ATMEL_START
#endif /* RTE_COMPONENTS_H */

View File

@ -0,0 +1,595 @@
/* Auto-generated config file hpl_adc_config.h */
#ifndef HPL_ADC_CONFIG_H
#define HPL_ADC_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
#ifndef CONF_ADC_0_ENABLE
#define CONF_ADC_0_ENABLE 1
#endif
// <h> Basic Configuration
// <o> Conversion Result Resolution
// <0x0=>12-bit
// <0x1=>16-bit (averaging must be enabled)
// <0x2=>10-bit
// <0x3=>8-bit
// <i> Defines the bit resolution for the ADC sample values (RESSEL)
// <id> adc_resolution
#ifndef CONF_ADC_0_RESSEL
#define CONF_ADC_0_RESSEL 0x0
#endif
// <o> Reference Selection
// <0x0=>Internal bandgap reference
// <0x2=>1/2 VDDANA (only for VDDANA > 2.0V)
// <0x3=>VDDANA
// <0x4=>External reference A
// <0x5=>External reference B
// <0x6=>External reference C
// <i> Select the reference for the ADC (REFSEL)
// <id> adc_reference
#ifndef CONF_ADC_0_REFSEL
#define CONF_ADC_0_REFSEL 0x4
#endif
// <o> Prescaler configuration
// <0x0=>Peripheral clock divided by 2
// <0x1=>Peripheral clock divided by 4
// <0x2=>Peripheral clock divided by 8
// <0x3=>Peripheral clock divided by 16
// <0x4=>Peripheral clock divided by 32
// <0x5=>Peripheral clock divided by 64
// <0x6=>Peripheral clock divided by 128
// <0x7=>Peripheral clock divided by 256
// <i> These bits define the ADC clock relative to the peripheral clock (PRESCALER)
// <id> adc_prescaler
#ifndef CONF_ADC_0_PRESCALER
#define CONF_ADC_0_PRESCALER 0x0
#endif
// <q> Free Running Mode
// <i> When enabled, the ADC is in free running mode and a new conversion will be initiated when a previous conversion completes. (FREERUN)
// <id> adc_freerunning_mode
#ifndef CONF_ADC_0_FREERUN
#define CONF_ADC_0_FREERUN 0
#endif
// <q> Differential Mode
// <i> In differential mode, the voltage difference between the MUXPOS and MUXNEG inputs will be converted by the ADC. (DIFFMODE)
// <id> adc_differential_mode
#ifndef CONF_ADC_0_DIFFMODE
#define CONF_ADC_0_DIFFMODE 1
#endif
// <o> Positive Mux Input Selection
// <0x00=>ADC AIN0 pin
// <0x01=>ADC AIN1 pin
// <0x02=>ADC AIN2 pin
// <0x03=>ADC AIN3 pin
// <0x04=>ADC AIN4 pin
// <0x05=>ADC AIN5 pin
// <0x06=>ADC AIN6 pin
// <0x07=>ADC AIN7 pin
// <0x08=>ADC AIN8 pin
// <0x09=>ADC AIN9 pin
// <0x0A=>ADC AIN10 pin
// <0x0B=>ADC AIN11 pin
// <0x0C=>ADC AIN12 pin
// <0x0D=>ADC AIN13 pin
// <0x0E=>ADC AIN14 pin
// <0x0F=>ADC AIN15 pin
// <0x18=>1/4 scaled core supply
// <0x19=>1/4 Scaled VBAT Supply
// <0x1A=>1/4 scaled I/O supply
// <0x1B=>Bandgap voltage
// <0x1C=>Temperature reference (PTAT)
// <0x1D=>Temperature reference (CTAT)
// <0x1E=>DAC Output
// <i> These bits define the Mux selection for the positive ADC input. (MUXPOS)
// <id> adc_pinmux_positive
#ifndef CONF_ADC_0_MUXPOS
#define CONF_ADC_0_MUXPOS 0x0
#endif
// <o> Negative Mux Input Selection
// <0x00=>ADC AIN0 pin
// <0x01=>ADC AIN1 pin
// <0x02=>ADC AIN2 pin
// <0x03=>ADC AIN3 pin
// <0x04=>ADC AIN4 pin
// <0x05=>ADC AIN5 pin
// <0x06=>ADC AIN6 pin
// <0x07=>ADC AIN7 pin
// <0x18=>Internal ground
// <i> These bits define the Mux selection for the negative ADC input. (MUXNEG)
// <id> adc_pinmux_negative
#ifndef CONF_ADC_0_MUXNEG
#define CONF_ADC_0_MUXNEG 0x2
#endif
// </h>
// <e> Advanced Configuration
// <id> adc_advanced_settings
#ifndef CONF_ADC_0_ADVANCED
#define CONF_ADC_0_ADVANCED 0
#endif
// <q> Run in standby
// <i> Indicates whether the ADC will continue running in standby sleep mode or not (RUNSTDBY)
// <id> adc_arch_runstdby
#ifndef CONF_ADC_0_RUNSTDBY
#define CONF_ADC_0_RUNSTDBY 0
#endif
// <q>Debug Run
// <i> If enabled, the ADC is running if the CPU is halted by an external debugger. (DBGRUN)
// <id> adc_arch_dbgrun
#ifndef CONF_ADC_0_DBGRUN
#define CONF_ADC_0_DBGRUN 0
#endif
// <q> On Demand Control
// <i> Will keep the ADC peripheral running if requested by other peripherals (ONDEMAND)
// <id> adc_arch_ondemand
#ifndef CONF_ADC_0_ONDEMAND
#define CONF_ADC_0_ONDEMAND 0
#endif
// <q> Left-Adjusted Result
// <i> When enabled, the ADC conversion result is left-adjusted in the RESULT register. The high byte of the 12-bit result will be present in the upper part of the result register. (LEFTADJ)
// <id> adc_arch_leftadj
#ifndef CONF_ADC_0_LEFTADJ
#define CONF_ADC_0_LEFTADJ 0
#endif
// <q> Reference Buffer Offset Compensation Enable
// <i> The accuracy of the gain stage can be increased by enabling the reference buffer offset compensation. This will decrease the input impedance and thus increase the start-up time of the reference. (REFCOMP)
// <id> adc_arch_refcomp
#ifndef CONF_ADC_0_REFCOMP
#define CONF_ADC_0_REFCOMP 0
#endif
// <q>Comparator Offset Compensation Enable
// <i> This bit indicates whether the Comparator Offset Compensation is enabled or not (OFFCOMP)
// <id> adc_arch_offcomp
#ifndef CONF_ADC_0_OFFCOMP
#define CONF_ADC_0_OFFCOMP 0
#endif
// <q> Digital Correction Logic Enabled
// <i> When enabled, the ADC conversion result in the RESULT register is then corrected for gain and offset based on the values in the GAINCAL and OFFSETCAL registers. (CORREN)
// <id> adc_arch_corren
#ifndef CONF_ADC_0_CORREN
#define CONF_ADC_0_CORREN 0
#endif
// <o> Offset Correction Value <0-4095>
// <i> If the digital correction logic is enabled (CTRLB.CORREN = 1), these bits define how the ADC conversion result is compensated for offset error before being written to the Result register. (OFFSETCORR)
// <id> adc_arch_offsetcorr
#ifndef CONF_ADC_0_OFFSETCORR
#define CONF_ADC_0_OFFSETCORR 0
#endif
// <o> Gain Correction Value <0-4095>
// <i> If the digital correction logic is enabled (CTRLB.CORREN = 1), these bits define how the ADC conversion result is compensated for gain error before being written to the result register. (GAINCORR)
// <id> adc_arch_gaincorr
#ifndef CONF_ADC_0_GAINCORR
#define CONF_ADC_0_GAINCORR 0
#endif
// <o> Adjusting Result / Division Coefficient <0-7>
// <i> These bits define the division coefficient in 2n steps. (ADJRES)
// <id> adc_arch_adjres
#ifndef CONF_ADC_0_ADJRES
#define CONF_ADC_0_ADJRES 0x0
#endif
// <o.0..10> Number of Samples to be Collected
// <0x0=>1 sample
// <0x1=>2 samples
// <0x2=>4 samples
// <0x3=>8 samples
// <0x4=>16 samples
// <0x5=>32 samples
// <0x6=>64 samples
// <0x7=>128 samples
// <0x8=>256 samples
// <0x9=>512 samples
// <0xA=>1024 samples
// <i> Define how many samples should be added together.The result will be available in the Result register (SAMPLENUM)
// <id> adc_arch_samplenum
#ifndef CONF_ADC_0_SAMPLENUM
#define CONF_ADC_0_SAMPLENUM 0x0
#endif
// <o> Sampling Time Length <0-63>
// <i> These bits control the ADC sampling time in number of CLK_ADC cycles, depending of the prescaler value, thus controlling the ADC input impedance. (SAMPLEN)
// <id> adc_arch_samplen
#ifndef CONF_ADC_0_SAMPLEN
#define CONF_ADC_0_SAMPLEN 0
#endif
// <o> Window Monitor Mode
// <0x0=>No window mode
// <0x1=>Mode 1: RESULT above lower threshold
// <0x2=>Mode 2: RESULT beneath upper threshold
// <0x3=>Mode 3: RESULT inside lower and upper threshold
// <0x4=>Mode 4: RESULT outside lower and upper threshold
// <i> These bits enable and define the window monitor mode. (WINMODE)
// <id> adc_arch_winmode
#ifndef CONF_ADC_0_WINMODE
#define CONF_ADC_0_WINMODE 0x0
#endif
// <o> Window Monitor Lower Threshold <0-65535>
// <i> If the window monitor is enabled, these bits define the lower threshold value. (WINLT)
// <id> adc_arch_winlt
#ifndef CONF_ADC_0_WINLT
#define CONF_ADC_0_WINLT 0
#endif
// <o> Window Monitor Upper Threshold <0-65535>
// <i> If the window monitor is enabled, these bits define the lower threshold value. (WINUT)
// <id> adc_arch_winut
#ifndef CONF_ADC_0_WINUT
#define CONF_ADC_0_WINUT 0
#endif
// <o> Bitmask for positive input sequence <0-4294967295>
// <i> Use this parameter to input the bitmask for positive input sequence control (refer to datasheet for the device).
// <id> adc_arch_seqen
#ifndef CONF_ADC_0_SEQEN
#define CONF_ADC_0_SEQEN 0x0
#endif
// </e>
// <e> Event Control
// <id> adc_arch_event_settings
#ifndef CONF_ADC_0_EVENT_CONTROL
#define CONF_ADC_0_EVENT_CONTROL 0
#endif
// <q> Window Monitor Event Out
// <i> Enables event output on window event (WINMONEO)
// <id> adc_arch_winmoneo
#ifndef CONF_ADC_0_WINMONEO
#define CONF_ADC_0_WINMONEO 0
#endif
// <q> Result Ready Event Out
// <i> Enables event output on result ready event (RESRDEO)
// <id> adc_arch_resrdyeo
#ifndef CONF_ADC_0_RESRDYEO
#define CONF_ADC_0_RESRDYEO 0
#endif
// <q> Invert flush Event Signal
// <i> Invert the flush event input signal (FLUSHINV)
// <id> adc_arch_flushinv
#ifndef CONF_ADC_0_FLUSHINV
#define CONF_ADC_0_FLUSHINV 0
#endif
// <q> Trigger Flush On Event
// <i> Trigger an ADC pipeline flush on event (FLUSHEI)
// <id> adc_arch_flushei
#ifndef CONF_ADC_0_FLUSHEI
#define CONF_ADC_0_FLUSHEI 0
#endif
// <q> Invert Start Conversion Event Signal
// <i> Invert the start conversion event input signal (STARTINV)
// <id> adc_arch_startinv
#ifndef CONF_ADC_0_STARTINV
#define CONF_ADC_0_STARTINV 0
#endif
// <q> Trigger Conversion On Event
// <i> Trigger a conversion on event. (STARTEI)
// <id> adc_arch_startei
#ifndef CONF_ADC_0_STARTEI
#define CONF_ADC_0_STARTEI 0
#endif
// </e>
#ifndef CONF_ADC_1_ENABLE
#define CONF_ADC_1_ENABLE 1
#endif
// <h> Basic Configuration
// <o> Conversion Result Resolution
// <0x0=>12-bit
// <0x1=>16-bit (averaging must be enabled)
// <0x2=>10-bit
// <0x3=>8-bit
// <i> Defines the bit resolution for the ADC sample values (RESSEL)
// <id> adc_resolution
#ifndef CONF_ADC_1_RESSEL
#define CONF_ADC_1_RESSEL 0x0
#endif
// <o> Reference Selection
// <0x0=>Internal bandgap reference
// <0x2=>1/2 VDDANA (only for VDDANA > 2.0V)
// <0x3=>VDDANA
// <0x4=>External reference A
// <0x5=>External reference B
// <0x6=>External reference C
// <i> Select the reference for the ADC (REFSEL)
// <id> adc_reference
#ifndef CONF_ADC_1_REFSEL
#define CONF_ADC_1_REFSEL 0x4
#endif
// <o> Prescaler configuration
// <0x0=>Peripheral clock divided by 2
// <0x1=>Peripheral clock divided by 4
// <0x2=>Peripheral clock divided by 8
// <0x3=>Peripheral clock divided by 16
// <0x4=>Peripheral clock divided by 32
// <0x5=>Peripheral clock divided by 64
// <0x6=>Peripheral clock divided by 128
// <0x7=>Peripheral clock divided by 256
// <i> These bits define the ADC clock relative to the peripheral clock (PRESCALER)
// <id> adc_prescaler
#ifndef CONF_ADC_1_PRESCALER
#define CONF_ADC_1_PRESCALER 0x0
#endif
// <q> Free Running Mode
// <i> When enabled, the ADC is in free running mode and a new conversion will be initiated when a previous conversion completes. (FREERUN)
// <id> adc_freerunning_mode
#ifndef CONF_ADC_1_FREERUN
#define CONF_ADC_1_FREERUN 0
#endif
// <q> Differential Mode
// <i> In differential mode, the voltage difference between the MUXPOS and MUXNEG inputs will be converted by the ADC. (DIFFMODE)
// <id> adc_differential_mode
#ifndef CONF_ADC_1_DIFFMODE
#define CONF_ADC_1_DIFFMODE 1
#endif
// <o> Positive Mux Input Selection
// <0x00=>ADC AIN0 pin
// <0x01=>ADC AIN1 pin
// <0x02=>ADC AIN2 pin
// <0x03=>ADC AIN3 pin
// <0x04=>ADC AIN4 pin
// <0x05=>ADC AIN5 pin
// <0x06=>ADC AIN6 pin
// <0x07=>ADC AIN7 pin
// <0x08=>ADC AIN8 pin
// <0x09=>ADC AIN9 pin
// <0x0A=>ADC AIN10 pin
// <0x0B=>ADC AIN11 pin
// <0x0C=>ADC AIN12 pin
// <0x0D=>ADC AIN13 pin
// <0x0E=>ADC AIN14 pin
// <0x0F=>ADC AIN15 pin
// <0x18=>1/4 scaled core supply
// <0x19=>1/4 Scaled VBAT Supply
// <0x1A=>1/4 scaled I/O supply
// <0x1B=>Bandgap voltage
// <0x1C=>Temperature reference (PTAT)
// <0x1D=>Temperature reference (CTAT)
// <0x1E=>DAC Output
// <i> These bits define the Mux selection for the positive ADC input. (MUXPOS)
// <id> adc_pinmux_positive
#ifndef CONF_ADC_1_MUXPOS
#define CONF_ADC_1_MUXPOS 0x1
#endif
// <o> Negative Mux Input Selection
// <0x00=>ADC AIN0 pin
// <0x01=>ADC AIN1 pin
// <0x02=>ADC AIN2 pin
// <0x03=>ADC AIN3 pin
// <0x04=>ADC AIN4 pin
// <0x05=>ADC AIN5 pin
// <0x06=>ADC AIN6 pin
// <0x07=>ADC AIN7 pin
// <0x18=>Internal ground
// <i> These bits define the Mux selection for the negative ADC input. (MUXNEG)
// <id> adc_pinmux_negative
#ifndef CONF_ADC_1_MUXNEG
#define CONF_ADC_1_MUXNEG 0x0
#endif
// </h>
// <e> Advanced Configuration
// <id> adc_advanced_settings
#ifndef CONF_ADC_1_ADVANCED
#define CONF_ADC_1_ADVANCED 0
#endif
// <q> Run in standby
// <i> Indicates whether the ADC will continue running in standby sleep mode or not (RUNSTDBY)
// <id> adc_arch_runstdby
#ifndef CONF_ADC_1_RUNSTDBY
#define CONF_ADC_1_RUNSTDBY 0
#endif
// <q>Debug Run
// <i> If enabled, the ADC is running if the CPU is halted by an external debugger. (DBGRUN)
// <id> adc_arch_dbgrun
#ifndef CONF_ADC_1_DBGRUN
#define CONF_ADC_1_DBGRUN 0
#endif
// <q> On Demand Control
// <i> Will keep the ADC peripheral running if requested by other peripherals (ONDEMAND)
// <id> adc_arch_ondemand
#ifndef CONF_ADC_1_ONDEMAND
#define CONF_ADC_1_ONDEMAND 0
#endif
// <q> Left-Adjusted Result
// <i> When enabled, the ADC conversion result is left-adjusted in the RESULT register. The high byte of the 12-bit result will be present in the upper part of the result register. (LEFTADJ)
// <id> adc_arch_leftadj
#ifndef CONF_ADC_1_LEFTADJ
#define CONF_ADC_1_LEFTADJ 0
#endif
// <q> Reference Buffer Offset Compensation Enable
// <i> The accuracy of the gain stage can be increased by enabling the reference buffer offset compensation. This will decrease the input impedance and thus increase the start-up time of the reference. (REFCOMP)
// <id> adc_arch_refcomp
#ifndef CONF_ADC_1_REFCOMP
#define CONF_ADC_1_REFCOMP 0
#endif
// <q>Comparator Offset Compensation Enable
// <i> This bit indicates whether the Comparator Offset Compensation is enabled or not (OFFCOMP)
// <id> adc_arch_offcomp
#ifndef CONF_ADC_1_OFFCOMP
#define CONF_ADC_1_OFFCOMP 0
#endif
// <q> Digital Correction Logic Enabled
// <i> When enabled, the ADC conversion result in the RESULT register is then corrected for gain and offset based on the values in the GAINCAL and OFFSETCAL registers. (CORREN)
// <id> adc_arch_corren
#ifndef CONF_ADC_1_CORREN
#define CONF_ADC_1_CORREN 0
#endif
// <o> Offset Correction Value <0-4095>
// <i> If the digital correction logic is enabled (CTRLB.CORREN = 1), these bits define how the ADC conversion result is compensated for offset error before being written to the Result register. (OFFSETCORR)
// <id> adc_arch_offsetcorr
#ifndef CONF_ADC_1_OFFSETCORR
#define CONF_ADC_1_OFFSETCORR 0
#endif
// <o> Gain Correction Value <0-4095>
// <i> If the digital correction logic is enabled (CTRLB.CORREN = 1), these bits define how the ADC conversion result is compensated for gain error before being written to the result register. (GAINCORR)
// <id> adc_arch_gaincorr
#ifndef CONF_ADC_1_GAINCORR
#define CONF_ADC_1_GAINCORR 0
#endif
// <o> Adjusting Result / Division Coefficient <0-7>
// <i> These bits define the division coefficient in 2n steps. (ADJRES)
// <id> adc_arch_adjres
#ifndef CONF_ADC_1_ADJRES
#define CONF_ADC_1_ADJRES 0x0
#endif
// <o.0..10> Number of Samples to be Collected
// <0x0=>1 sample
// <0x1=>2 samples
// <0x2=>4 samples
// <0x3=>8 samples
// <0x4=>16 samples
// <0x5=>32 samples
// <0x6=>64 samples
// <0x7=>128 samples
// <0x8=>256 samples
// <0x9=>512 samples
// <0xA=>1024 samples
// <i> Define how many samples should be added together.The result will be available in the Result register (SAMPLENUM)
// <id> adc_arch_samplenum
#ifndef CONF_ADC_1_SAMPLENUM
#define CONF_ADC_1_SAMPLENUM 0x0
#endif
// <o> Sampling Time Length <0-63>
// <i> These bits control the ADC sampling time in number of CLK_ADC cycles, depending of the prescaler value, thus controlling the ADC input impedance. (SAMPLEN)
// <id> adc_arch_samplen
#ifndef CONF_ADC_1_SAMPLEN
#define CONF_ADC_1_SAMPLEN 0
#endif
// <o> Window Monitor Mode
// <0x0=>No window mode
// <0x1=>Mode 1: RESULT above lower threshold
// <0x2=>Mode 2: RESULT beneath upper threshold
// <0x3=>Mode 3: RESULT inside lower and upper threshold
// <0x4=>Mode 4: RESULT outside lower and upper threshold
// <i> These bits enable and define the window monitor mode. (WINMODE)
// <id> adc_arch_winmode
#ifndef CONF_ADC_1_WINMODE
#define CONF_ADC_1_WINMODE 0x0
#endif
// <o> Window Monitor Lower Threshold <0-65535>
// <i> If the window monitor is enabled, these bits define the lower threshold value. (WINLT)
// <id> adc_arch_winlt
#ifndef CONF_ADC_1_WINLT
#define CONF_ADC_1_WINLT 0
#endif
// <o> Window Monitor Upper Threshold <0-65535>
// <i> If the window monitor is enabled, these bits define the lower threshold value. (WINUT)
// <id> adc_arch_winut
#ifndef CONF_ADC_1_WINUT
#define CONF_ADC_1_WINUT 0
#endif
// <o> Bitmask for positive input sequence <0-4294967295>
// <i> Use this parameter to input the bitmask for positive input sequence control (refer to datasheet for the device).
// <id> adc_arch_seqen
#ifndef CONF_ADC_1_SEQEN
#define CONF_ADC_1_SEQEN 0x0
#endif
// </e>
// <e> Event Control
// <id> adc_arch_event_settings
#ifndef CONF_ADC_1_EVENT_CONTROL
#define CONF_ADC_1_EVENT_CONTROL 0
#endif
// <q> Window Monitor Event Out
// <i> Enables event output on window event (WINMONEO)
// <id> adc_arch_winmoneo
#ifndef CONF_ADC_1_WINMONEO
#define CONF_ADC_1_WINMONEO 0
#endif
// <q> Result Ready Event Out
// <i> Enables event output on result ready event (RESRDEO)
// <id> adc_arch_resrdyeo
#ifndef CONF_ADC_1_RESRDYEO
#define CONF_ADC_1_RESRDYEO 0
#endif
// <q> Invert flush Event Signal
// <i> Invert the flush event input signal (FLUSHINV)
// <id> adc_arch_flushinv
#ifndef CONF_ADC_1_FLUSHINV
#define CONF_ADC_1_FLUSHINV 0
#endif
// <q> Trigger Flush On Event
// <i> Trigger an ADC pipeline flush on event (FLUSHEI)
// <id> adc_arch_flushei
#ifndef CONF_ADC_1_FLUSHEI
#define CONF_ADC_1_FLUSHEI 0
#endif
// <q> Invert Start Conversion Event Signal
// <i> Invert the start conversion event input signal (STARTINV)
// <id> adc_arch_startinv
#ifndef CONF_ADC_1_STARTINV
#define CONF_ADC_1_STARTINV 0
#endif
// <q> Trigger Conversion On Event
// <i> Trigger a conversion on event. (STARTEI)
// <id> adc_arch_startei
#ifndef CONF_ADC_1_STARTEI
#define CONF_ADC_1_STARTEI 0
#endif
// </e>
// <<< end of configuration section >>>
#endif // HPL_ADC_CONFIG_H

View File

@ -0,0 +1,499 @@
/* Auto-generated config file hpl_ccl_config.h */
#ifndef HPL_CCL_CONFIG_H
#define HPL_CCL_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <o> Sequential Control Logic 0
// <0x0=> Sequential logic is disabled
// <0x1=> D flip flop
// <0x2=> JK flip flop
// <0x3=> D latch
// <0x4=> RS latch
// <i> Selects mode for sequential module 0
// <id> ccl_arch_seqsel_0
#ifndef CONF_CCL_SEQSEL_0
#define CONF_CCL_SEQSEL_0 0x0
#endif
// <o> Sequential Control Logic 1
// <0x0=> Sequential logic is disabled
// <0x1=> D flip flop
// <0x2=> JK flip flop
// <0x3=> D latch
// <0x4=> RS latch
// <i> Selects mode for sequential module 1
// <id> ccl_arch_seqsel_1
#ifndef CONF_CCL_SEQSEL_1
#define CONF_CCL_SEQSEL_1 0x0
#endif
// <e> Lookup Table Control 0
// <i> Enable and setup the lookup table module 0
// <id> ccl_arch_lutctrl0
#ifndef CONF_CCL_LUTCTRL_EN_0
#define CONF_CCL_LUTCTRL_EN_0 0
#endif
// <o> Truth Table <0x00-0xFF>
// <i> Define the value of truth logic according to inputs IN[2:0]
// <id> ccl_arch_truth_0
#ifndef CONF_CCL_TRUTH_0
#define CONF_CCL_TRUTH_0 0x0
#endif
// <o> Input Source Selection 0
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel0_0
#ifndef CONF_CCL_INSEL0_0
#define CONF_CCL_INSEL0_0 0x4
#endif
// <o> Input Source Selection 1
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel1_0
#ifndef CONF_CCL_INSEL1_0
#define CONF_CCL_INSEL1_0 0x4
#endif
// <o> Input Source Selection 2
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel2_0
#ifndef CONF_CCL_INSEL2_0
#define CONF_CCL_INSEL2_0 0x4
#endif
// <q> Edge detector enable
// <id> ccl_arch_edgesel_0
#ifndef CONF_CCL_EDGESEL_0
#define CONF_CCL_EDGESEL_0 0
#endif
// <o> Output Filter
// <0x0=> Disabled
// <0x1=> Synchronizer Enabled
// <0x2=> Filter Enabled
// <id> ccl_arch_filtsel_0
#ifndef CONF_CCL_FILTSEL_0
#define CONF_CCL_FILTSEL_0 0x0
#endif
// <h> Event settings 0
// <q> Event output enable
// <id> ccl_arch_luteo_0
#ifndef CONF_CCL_LUTEO_0
#define CONF_CCL_LUTEO_0 0
#endif
// <q> Event input enable
// <id> ccl_arch_lutei_0
#ifndef CONF_CCL_LUTEI_0
#define CONF_CCL_LUTEI_0 0
#endif
// <q> Event input invert
// <id> ccl_arch_invei_0
#ifndef CONF_CCL_INVEI_0
#define CONF_CCL_INVEI_0 0
#endif
// </h>
// </e>
// <hidden> Persistance settings 0
// <s> Expression Persistance
// <id> ccl_e_persistance_0
#define EXPRESSION_PERSISTANCE_0 ""
// <s> Logic Persistance
// <id> ccl_l_persistance_0
#define LOGIC_PERSISTANCE_0 ""
// </hidden>
// <e> Lookup Table Control 1
// <i> Enable and setup the lookup table module 1
// <id> ccl_arch_lutctrl1
#ifndef CONF_CCL_LUTCTRL_EN_1
#define CONF_CCL_LUTCTRL_EN_1 0
#endif
// <o> Truth Table <0x00-0xFF>
// <i> Define the value of truth logic according to inputs IN[2:0]
// <id> ccl_arch_truth_1
#ifndef CONF_CCL_TRUTH_1
#define CONF_CCL_TRUTH_1 0x0
#endif
// <o> Input Source Selection 0
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel0_1
#ifndef CONF_CCL_INSEL0_1
#define CONF_CCL_INSEL0_1 0x4
#endif
// <o> Input Source Selection 1
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel1_1
#ifndef CONF_CCL_INSEL1_1
#define CONF_CCL_INSEL1_1 0x4
#endif
// <o> Input Source Selection 2
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel2_1
#ifndef CONF_CCL_INSEL2_1
#define CONF_CCL_INSEL2_1 0x4
#endif
// <q> Edge detector enable
// <id> ccl_arch_edgesel_1
#ifndef CONF_CCL_EDGESEL_1
#define CONF_CCL_EDGESEL_1 0
#endif
// <o> Output Filter
// <0x0=> Disabled
// <0x1=> Synchronizer Enabled
// <0x2=> Filter Enabled
// <id> ccl_arch_filtsel_1
#ifndef CONF_CCL_FILTSEL_1
#define CONF_CCL_FILTSEL_1 0x0
#endif
// <h> Event settings 1
// <q> Event output enable
// <id> ccl_arch_luteo_1
#ifndef CONF_CCL_LUTEO_1
#define CONF_CCL_LUTEO_1 0
#endif
// <q> Event input enable
// <id> ccl_arch_lutei_1
#ifndef CONF_CCL_LUTEI_1
#define CONF_CCL_LUTEI_1 0
#endif
// <q> Event input invert
// <id> ccl_arch_invei_1
#ifndef CONF_CCL_INVEI_1
#define CONF_CCL_INVEI_1 0
#endif
// </h>
// </e>
// <hidden> Persistance settings 1
// <s> Expression Persistance
// <id> ccl_e_persistance_1
#define EXPRESSION_PERSISTANCE_1 ""
// <s> Logic Persistance
// <id> ccl_l_persistance_1
#define LOGIC_PERSISTANCE_1 ""
// </hidden>
// <e> Lookup Table Control 2
// <i> Enable and setup the lookup table module 2
// <id> ccl_arch_lutctrl2
#ifndef CONF_CCL_LUTCTRL_EN_2
#define CONF_CCL_LUTCTRL_EN_2 0
#endif
// <o> Truth Table <0x00-0xFF>
// <i> Define the value of truth logic according to inputs IN[2:0]
// <id> ccl_arch_truth_2
#ifndef CONF_CCL_TRUTH_2
#define CONF_CCL_TRUTH_2 0x0
#endif
// <o> Input Source Selection 0
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel0_2
#ifndef CONF_CCL_INSEL0_2
#define CONF_CCL_INSEL0_2 0x4
#endif
// <o> Input Source Selection 1
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel1_2
#ifndef CONF_CCL_INSEL1_2
#define CONF_CCL_INSEL1_2 0x4
#endif
// <o> Input Source Selection 2
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel2_2
#ifndef CONF_CCL_INSEL2_2
#define CONF_CCL_INSEL2_2 0x4
#endif
// <q> Edge detector enable
// <id> ccl_arch_edgesel_2
#ifndef CONF_CCL_EDGESEL_2
#define CONF_CCL_EDGESEL_2 0
#endif
// <o> Output Filter
// <0x0=> Disabled
// <0x1=> Synchronizer Enabled
// <0x2=> Filter Enabled
// <id> ccl_arch_filtsel_2
#ifndef CONF_CCL_FILTSEL_2
#define CONF_CCL_FILTSEL_2 0x0
#endif
// <h> Event settings 2
// <q> Event output enable
// <id> ccl_arch_luteo_2
#ifndef CONF_CCL_LUTEO_2
#define CONF_CCL_LUTEO_2 0
#endif
// <q> Event input enable
// <id> ccl_arch_lutei_2
#ifndef CONF_CCL_LUTEI_2
#define CONF_CCL_LUTEI_2 0
#endif
// <q> Event input invert
// <id> ccl_arch_invei_2
#ifndef CONF_CCL_INVEI_2
#define CONF_CCL_INVEI_2 0
#endif
// </h>
// </e>
// <hidden> Persistance settings 2
// <s> Expression Persistance
// <id> ccl_e_persistance_2
#define EXPRESSION_PERSISTANCE_2 ""
// <s> Logic Persistance
// <id> ccl_l_persistance_2
#define LOGIC_PERSISTANCE_2 ""
// </hidden>
// <e> Lookup Table Control 3
// <i> Enable and setup the lookup table module 3
// <id> ccl_arch_lutctrl3
#ifndef CONF_CCL_LUTCTRL_EN_3
#define CONF_CCL_LUTCTRL_EN_3 0
#endif
// <o> Truth Table <0x00-0xFF>
// <i> Define the value of truth logic according to inputs IN[2:0]
// <id> ccl_arch_truth_3
#ifndef CONF_CCL_TRUTH_3
#define CONF_CCL_TRUTH_3 0x0
#endif
// <o> Input Source Selection 0
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel0_3
#ifndef CONF_CCL_INSEL0_3
#define CONF_CCL_INSEL0_3 0x4
#endif
// <o> Input Source Selection 1
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel1_3
#ifndef CONF_CCL_INSEL1_3
#define CONF_CCL_INSEL1_3 0x4
#endif
// <o> Input Source Selection 2
// <0x0=> Masked input
// <0x1=> Feedback input source
// <0x2=> Linked LookUpTable input source
// <0x3=> Event input source
// <0x4=> IO pin input source
// <0x5=> AC input source
// <0x6=> TC input source
// <0x7=> Alternative TC input source
// <0x8=> TCC input source
// <0x9=> SERCOM input source
// <id> ccl_arch_insel2_3
#ifndef CONF_CCL_INSEL2_3
#define CONF_CCL_INSEL2_3 0x4
#endif
// <q> Edge detector enable
// <id> ccl_arch_edgesel_3
#ifndef CONF_CCL_EDGESEL_3
#define CONF_CCL_EDGESEL_3 0
#endif
// <o> Output Filter
// <0x0=> Disabled
// <0x1=> Synchronizer Enabled
// <0x2=> Filter Enabled
// <id> ccl_arch_filtsel_3
#ifndef CONF_CCL_FILTSEL_3
#define CONF_CCL_FILTSEL_3 0x0
#endif
// <h> Event settings 3
// <q> Event output enable
// <id> ccl_arch_luteo_3
#ifndef CONF_CCL_LUTEO_3
#define CONF_CCL_LUTEO_3 0
#endif
// <q> Event input enable
// <id> ccl_arch_lutei_3
#ifndef CONF_CCL_LUTEI_3
#define CONF_CCL_LUTEI_3 0
#endif
// <q> Event input invert
// <id> ccl_arch_invei_3
#ifndef CONF_CCL_INVEI_3
#define CONF_CCL_INVEI_3 0
#endif
// </h>
// </e>
// <hidden> Persistance settings 3
// <s> Expression Persistance
// <id> ccl_e_persistance_3
#define EXPRESSION_PERSISTANCE_3 ""
// <s> Logic Persistance
// <id> ccl_l_persistance_3
#define LOGIC_PERSISTANCE_3 ""
// </hidden>
// <e> Advanced configurations
// <id> ccl_arch_advanced_settings
#ifndef CONF_CCL_ADVANCED
#define CONF_CCL_ADVANCED 0
#endif
// <q> Run in Standby
// <id> ccl_arch_runstdby
#ifndef CONF_CCL_RUNSTDBY
#define CONF_CCL_RUNSTDBY 0
#endif
// </e>
// <<< end of configuration section >>>
#endif // HPL_CCL_CONFIG_H

View File

@ -0,0 +1,913 @@
/* Auto-generated config file hpl_eic_config.h */
#ifndef HPL_EIC_CONFIG_H
#define HPL_EIC_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <h> Basic Settings
// <o> Clock Selection
// <i> Indicates which clock used, The EIC can be clocked either by GCLK_EIC when higher frequency than 32KHz is required for filtering or
// <i> either by CLK_ULP32K when power consumption is the priority.
// <0x0=> Clocked by GCLK
// <0x1=> Clocked by ULPOSC32K
// <id> eic_arch_cksel
#ifndef CONF_EIC_CKSEL
#define CONF_EIC_CKSEL 0
#endif
// <o> Pin Sampler frequency selection
// <i> Indicates the sampling rate of the EXTINT pin.
// <0x0=> The sampling rate is EIC clock
// <0x1=> The sampling rate is the prescaled clock
// <id> eic_arch_tickon
#ifndef CONF_EIC_TICKON
#define CONF_EIC_TICKON 0
#endif
// </h>
// <e> Non-Maskable Interrupt Control
// <id> eic_arch_nmi_ctrl
#ifndef CONF_EIC_ENABLE_NMI_CTRL
#define CONF_EIC_ENABLE_NMI_CTRL 0
#endif
// <q> Non-Maskable Interrupt Filter Enable
// <i> Indicates whether the mon-maskable interrupt filter is enabled or not
// <id> eic_arch_nmifilten
#ifndef CONF_EIC_NMIFILTEN
#define CONF_EIC_NMIFILTEN 0
#endif
// <y> Non-Maskable Interrupt Sense
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines non-maskable interrupt sense
// <id> eic_arch_nmisense
#ifndef CONF_EIC_NMISENSE
#define CONF_EIC_NMISENSE EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> Asynchronous Edge Detection Mode
// <i> Indicates the interrupt detection mode operated synchronously or asynchronousl
// <id> eic_arch_nmiasynch
#ifndef CONF_EIC_NMIASYNCH
#define CONF_EIC_NMIASYNCH 0
#endif
// </e>
// <e> Interrupt 0 Settings
// <id> eic_arch_enable_irq_setting0
#ifndef CONF_EIC_ENABLE_IRQ_SETTING0
#define CONF_EIC_ENABLE_IRQ_SETTING0 0
#endif
// <q> External Interrupt 0 Filter Enable
// <i> Indicates whether the external interrupt 0 filter is enabled or not
// <id> eic_arch_filten0
#ifndef CONF_EIC_FILTEN0
#define CONF_EIC_FILTEN0 0
#endif
// <q> External Interrupt 0 Debounce Enable
// <i> Indicates whether the external interrupt 0 debounce is enabled or not
// <id> eic_arch_debounce_enable0
#ifndef CONF_EIC_DEBOUNCE_ENABLE0
#define CONF_EIC_DEBOUNCE_ENABLE0 0
#endif
// <q> External Interrupt 0 Event Output Enable
// <i> Indicates whether the external interrupt 0 event output is enabled or not
// <id> eic_arch_extinteo0
#ifndef CONF_EIC_EXTINTEO0
#define CONF_EIC_EXTINTEO0 0
#endif
// <y> Input 0 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense0
#ifndef CONF_EIC_SENSE0
#define CONF_EIC_SENSE0 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 0 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 0 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch0
#ifndef CONF_EIC_ASYNCH0
#define CONF_EIC_ASYNCH0 0
#endif
// </e>
// <e> Interrupt 1 Settings
// <id> eic_arch_enable_irq_setting1
#ifndef CONF_EIC_ENABLE_IRQ_SETTING1
#define CONF_EIC_ENABLE_IRQ_SETTING1 0
#endif
// <q> External Interrupt 1 Filter Enable
// <i> Indicates whether the external interrupt 1 filter is enabled or not
// <id> eic_arch_filten1
#ifndef CONF_EIC_FILTEN1
#define CONF_EIC_FILTEN1 0
#endif
// <q> External Interrupt 1 Debounce Enable
// <i> Indicates whether the external interrupt 1 debounce is enabled or not
// <id> eic_arch_debounce_enable1
#ifndef CONF_EIC_DEBOUNCE_ENABLE1
#define CONF_EIC_DEBOUNCE_ENABLE1 0
#endif
// <q> External Interrupt 1 Event Output Enable
// <i> Indicates whether the external interrupt 1 event output is enabled or not
// <id> eic_arch_extinteo1
#ifndef CONF_EIC_EXTINTEO1
#define CONF_EIC_EXTINTEO1 0
#endif
// <y> Input 1 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense1
#ifndef CONF_EIC_SENSE1
#define CONF_EIC_SENSE1 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 1 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 1 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch1
#ifndef CONF_EIC_ASYNCH1
#define CONF_EIC_ASYNCH1 0
#endif
// </e>
// <e> Interrupt 2 Settings
// <id> eic_arch_enable_irq_setting2
#ifndef CONF_EIC_ENABLE_IRQ_SETTING2
#define CONF_EIC_ENABLE_IRQ_SETTING2 0
#endif
// <q> External Interrupt 2 Filter Enable
// <i> Indicates whether the external interrupt 2 filter is enabled or not
// <id> eic_arch_filten2
#ifndef CONF_EIC_FILTEN2
#define CONF_EIC_FILTEN2 0
#endif
// <q> External Interrupt 2 Debounce Enable
// <i> Indicates whether the external interrupt 2 debounce is enabled or not
// <id> eic_arch_debounce_enable2
#ifndef CONF_EIC_DEBOUNCE_ENABLE2
#define CONF_EIC_DEBOUNCE_ENABLE2 0
#endif
// <q> External Interrupt 2 Event Output Enable
// <i> Indicates whether the external interrupt 2 event output is enabled or not
// <id> eic_arch_extinteo2
#ifndef CONF_EIC_EXTINTEO2
#define CONF_EIC_EXTINTEO2 0
#endif
// <y> Input 2 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense2
#ifndef CONF_EIC_SENSE2
#define CONF_EIC_SENSE2 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 2 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 2 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch2
#ifndef CONF_EIC_ASYNCH2
#define CONF_EIC_ASYNCH2 0
#endif
// </e>
// <e> Interrupt 3 Settings
// <id> eic_arch_enable_irq_setting3
#ifndef CONF_EIC_ENABLE_IRQ_SETTING3
#define CONF_EIC_ENABLE_IRQ_SETTING3 0
#endif
// <q> External Interrupt 3 Filter Enable
// <i> Indicates whether the external interrupt 3 filter is enabled or not
// <id> eic_arch_filten3
#ifndef CONF_EIC_FILTEN3
#define CONF_EIC_FILTEN3 0
#endif
// <q> External Interrupt 3 Debounce Enable
// <i> Indicates whether the external interrupt 3 debounce is enabled or not
// <id> eic_arch_debounce_enable3
#ifndef CONF_EIC_DEBOUNCE_ENABLE3
#define CONF_EIC_DEBOUNCE_ENABLE3 0
#endif
// <q> External Interrupt 3 Event Output Enable
// <i> Indicates whether the external interrupt 3 event output is enabled or not
// <id> eic_arch_extinteo3
#ifndef CONF_EIC_EXTINTEO3
#define CONF_EIC_EXTINTEO3 0
#endif
// <y> Input 3 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense3
#ifndef CONF_EIC_SENSE3
#define CONF_EIC_SENSE3 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 3 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 3 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch3
#ifndef CONF_EIC_ASYNCH3
#define CONF_EIC_ASYNCH3 0
#endif
// </e>
// <e> Interrupt 4 Settings
// <id> eic_arch_enable_irq_setting4
#ifndef CONF_EIC_ENABLE_IRQ_SETTING4
#define CONF_EIC_ENABLE_IRQ_SETTING4 0
#endif
// <q> External Interrupt 4 Filter Enable
// <i> Indicates whether the external interrupt 4 filter is enabled or not
// <id> eic_arch_filten4
#ifndef CONF_EIC_FILTEN4
#define CONF_EIC_FILTEN4 0
#endif
// <q> External Interrupt 4 Debounce Enable
// <i> Indicates whether the external interrupt 4 debounce is enabled or not
// <id> eic_arch_debounce_enable4
#ifndef CONF_EIC_DEBOUNCE_ENABLE4
#define CONF_EIC_DEBOUNCE_ENABLE4 0
#endif
// <q> External Interrupt 4 Event Output Enable
// <i> Indicates whether the external interrupt 4 event output is enabled or not
// <id> eic_arch_extinteo4
#ifndef CONF_EIC_EXTINTEO4
#define CONF_EIC_EXTINTEO4 0
#endif
// <y> Input 4 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense4
#ifndef CONF_EIC_SENSE4
#define CONF_EIC_SENSE4 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 4 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 4 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch4
#ifndef CONF_EIC_ASYNCH4
#define CONF_EIC_ASYNCH4 0
#endif
// </e>
// <e> Interrupt 5 Settings
// <id> eic_arch_enable_irq_setting5
#ifndef CONF_EIC_ENABLE_IRQ_SETTING5
#define CONF_EIC_ENABLE_IRQ_SETTING5 0
#endif
// <q> External Interrupt 5 Filter Enable
// <i> Indicates whether the external interrupt 5 filter is enabled or not
// <id> eic_arch_filten5
#ifndef CONF_EIC_FILTEN5
#define CONF_EIC_FILTEN5 0
#endif
// <q> External Interrupt 5 Debounce Enable
// <i> Indicates whether the external interrupt 5 debounce is enabled or not
// <id> eic_arch_debounce_enable5
#ifndef CONF_EIC_DEBOUNCE_ENABLE5
#define CONF_EIC_DEBOUNCE_ENABLE5 0
#endif
// <q> External Interrupt 5 Event Output Enable
// <i> Indicates whether the external interrupt 5 event output is enabled or not
// <id> eic_arch_extinteo5
#ifndef CONF_EIC_EXTINTEO5
#define CONF_EIC_EXTINTEO5 0
#endif
// <y> Input 5 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense5
#ifndef CONF_EIC_SENSE5
#define CONF_EIC_SENSE5 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 5 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 5 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch5
#ifndef CONF_EIC_ASYNCH5
#define CONF_EIC_ASYNCH5 0
#endif
// </e>
// <e> Interrupt 6 Settings
// <id> eic_arch_enable_irq_setting6
#ifndef CONF_EIC_ENABLE_IRQ_SETTING6
#define CONF_EIC_ENABLE_IRQ_SETTING6 0
#endif
// <q> External Interrupt 6 Filter Enable
// <i> Indicates whether the external interrupt 6 filter is enabled or not
// <id> eic_arch_filten6
#ifndef CONF_EIC_FILTEN6
#define CONF_EIC_FILTEN6 0
#endif
// <q> External Interrupt 6 Debounce Enable
// <i> Indicates whether the external interrupt 6 debounce is enabled or not
// <id> eic_arch_debounce_enable6
#ifndef CONF_EIC_DEBOUNCE_ENABLE6
#define CONF_EIC_DEBOUNCE_ENABLE6 0
#endif
// <q> External Interrupt 6 Event Output Enable
// <i> Indicates whether the external interrupt 6 event output is enabled or not
// <id> eic_arch_extinteo6
#ifndef CONF_EIC_EXTINTEO6
#define CONF_EIC_EXTINTEO6 0
#endif
// <y> Input 6 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense6
#ifndef CONF_EIC_SENSE6
#define CONF_EIC_SENSE6 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 6 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 6 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch6
#ifndef CONF_EIC_ASYNCH6
#define CONF_EIC_ASYNCH6 0
#endif
// </e>
// <e> Interrupt 7 Settings
// <id> eic_arch_enable_irq_setting7
#ifndef CONF_EIC_ENABLE_IRQ_SETTING7
#define CONF_EIC_ENABLE_IRQ_SETTING7 0
#endif
// <q> External Interrupt 7 Filter Enable
// <i> Indicates whether the external interrupt 7 filter is enabled or not
// <id> eic_arch_filten7
#ifndef CONF_EIC_FILTEN7
#define CONF_EIC_FILTEN7 0
#endif
// <q> External Interrupt 7 Debounce Enable
// <i> Indicates whether the external interrupt 7 debounce is enabled or not
// <id> eic_arch_debounce_enable7
#ifndef CONF_EIC_DEBOUNCE_ENABLE7
#define CONF_EIC_DEBOUNCE_ENABLE7 0
#endif
// <q> External Interrupt 7 Event Output Enable
// <i> Indicates whether the external interrupt 7 event output is enabled or not
// <id> eic_arch_extinteo7
#ifndef CONF_EIC_EXTINTEO7
#define CONF_EIC_EXTINTEO7 0
#endif
// <y> Input 7 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense7
#ifndef CONF_EIC_SENSE7
#define CONF_EIC_SENSE7 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 7 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 7 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch7
#ifndef CONF_EIC_ASYNCH7
#define CONF_EIC_ASYNCH7 0
#endif
// </e>
// <e> Interrupt 8 Settings
// <id> eic_arch_enable_irq_setting8
#ifndef CONF_EIC_ENABLE_IRQ_SETTING8
#define CONF_EIC_ENABLE_IRQ_SETTING8 0
#endif
// <q> External Interrupt 8 Filter Enable
// <i> Indicates whether the external interrupt 8 filter is enabled or not
// <id> eic_arch_filten8
#ifndef CONF_EIC_FILTEN8
#define CONF_EIC_FILTEN8 0
#endif
// <q> External Interrupt 8 Debounce Enable
// <i> Indicates whether the external interrupt 8 debounce is enabled or not
// <id> eic_arch_debounce_enable8
#ifndef CONF_EIC_DEBOUNCE_ENABLE8
#define CONF_EIC_DEBOUNCE_ENABLE8 0
#endif
// <q> External Interrupt 8 Event Output Enable
// <i> Indicates whether the external interrupt 8 event output is enabled or not
// <id> eic_arch_extinteo8
#ifndef CONF_EIC_EXTINTEO8
#define CONF_EIC_EXTINTEO8 0
#endif
// <y> Input 8 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense8
#ifndef CONF_EIC_SENSE8
#define CONF_EIC_SENSE8 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 8 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 8 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch8
#ifndef CONF_EIC_ASYNCH8
#define CONF_EIC_ASYNCH8 0
#endif
// </e>
// <e> Interrupt 9 Settings
// <id> eic_arch_enable_irq_setting9
#ifndef CONF_EIC_ENABLE_IRQ_SETTING9
#define CONF_EIC_ENABLE_IRQ_SETTING9 0
#endif
// <q> External Interrupt 9 Filter Enable
// <i> Indicates whether the external interrupt 9 filter is enabled or not
// <id> eic_arch_filten9
#ifndef CONF_EIC_FILTEN9
#define CONF_EIC_FILTEN9 0
#endif
// <q> External Interrupt 9 Debounce Enable
// <i> Indicates whether the external interrupt 9 debounce is enabled or not
// <id> eic_arch_debounce_enable9
#ifndef CONF_EIC_DEBOUNCE_ENABLE9
#define CONF_EIC_DEBOUNCE_ENABLE9 0
#endif
// <q> External Interrupt 9 Event Output Enable
// <i> Indicates whether the external interrupt 9 event output is enabled or not
// <id> eic_arch_extinteo9
#ifndef CONF_EIC_EXTINTEO9
#define CONF_EIC_EXTINTEO9 0
#endif
// <y> Input 9 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense9
#ifndef CONF_EIC_SENSE9
#define CONF_EIC_SENSE9 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 9 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 9 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch9
#ifndef CONF_EIC_ASYNCH9
#define CONF_EIC_ASYNCH9 0
#endif
// </e>
// <e> Interrupt 10 Settings
// <id> eic_arch_enable_irq_setting10
#ifndef CONF_EIC_ENABLE_IRQ_SETTING10
#define CONF_EIC_ENABLE_IRQ_SETTING10 0
#endif
// <q> External Interrupt 10 Filter Enable
// <i> Indicates whether the external interrupt 10 filter is enabled or not
// <id> eic_arch_filten10
#ifndef CONF_EIC_FILTEN10
#define CONF_EIC_FILTEN10 0
#endif
// <q> External Interrupt 10 Debounce Enable
// <i> Indicates whether the external interrupt 10 debounce is enabled or not
// <id> eic_arch_debounce_enable10
#ifndef CONF_EIC_DEBOUNCE_ENABLE10
#define CONF_EIC_DEBOUNCE_ENABLE10 0
#endif
// <q> External Interrupt 10 Event Output Enable
// <i> Indicates whether the external interrupt 10 event output is enabled or not
// <id> eic_arch_extinteo10
#ifndef CONF_EIC_EXTINTEO10
#define CONF_EIC_EXTINTEO10 0
#endif
// <y> Input 10 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense10
#ifndef CONF_EIC_SENSE10
#define CONF_EIC_SENSE10 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 10 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 10 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch10
#ifndef CONF_EIC_ASYNCH10
#define CONF_EIC_ASYNCH10 0
#endif
// </e>
// <e> Interrupt 11 Settings
// <id> eic_arch_enable_irq_setting11
#ifndef CONF_EIC_ENABLE_IRQ_SETTING11
#define CONF_EIC_ENABLE_IRQ_SETTING11 0
#endif
// <q> External Interrupt 11 Filter Enable
// <i> Indicates whether the external interrupt 11 filter is enabled or not
// <id> eic_arch_filten11
#ifndef CONF_EIC_FILTEN11
#define CONF_EIC_FILTEN11 0
#endif
// <q> External Interrupt 11 Debounce Enable
// <i> Indicates whether the external interrupt 11 debounce is enabled or not
// <id> eic_arch_debounce_enable11
#ifndef CONF_EIC_DEBOUNCE_ENABLE11
#define CONF_EIC_DEBOUNCE_ENABLE11 0
#endif
// <q> External Interrupt 11 Event Output Enable
// <i> Indicates whether the external interrupt 11 event output is enabled or not
// <id> eic_arch_extinteo11
#ifndef CONF_EIC_EXTINTEO11
#define CONF_EIC_EXTINTEO11 0
#endif
// <y> Input 11 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense11
#ifndef CONF_EIC_SENSE11
#define CONF_EIC_SENSE11 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 11 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 11 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch11
#ifndef CONF_EIC_ASYNCH11
#define CONF_EIC_ASYNCH11 0
#endif
// </e>
// <e> Interrupt 12 Settings
// <id> eic_arch_enable_irq_setting12
#ifndef CONF_EIC_ENABLE_IRQ_SETTING12
#define CONF_EIC_ENABLE_IRQ_SETTING12 0
#endif
// <q> External Interrupt 12 Filter Enable
// <i> Indicates whether the external interrupt 12 filter is enabled or not
// <id> eic_arch_filten12
#ifndef CONF_EIC_FILTEN12
#define CONF_EIC_FILTEN12 0
#endif
// <q> External Interrupt 12 Debounce Enable
// <i> Indicates whether the external interrupt 12 debounce is enabled or not
// <id> eic_arch_debounce_enable12
#ifndef CONF_EIC_DEBOUNCE_ENABLE12
#define CONF_EIC_DEBOUNCE_ENABLE12 0
#endif
// <q> External Interrupt 12 Event Output Enable
// <i> Indicates whether the external interrupt 12 event output is enabled or not
// <id> eic_arch_extinteo12
#ifndef CONF_EIC_EXTINTEO12
#define CONF_EIC_EXTINTEO12 0
#endif
// <y> Input 12 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense12
#ifndef CONF_EIC_SENSE12
#define CONF_EIC_SENSE12 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 12 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 12 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch12
#ifndef CONF_EIC_ASYNCH12
#define CONF_EIC_ASYNCH12 0
#endif
// </e>
// <e> Interrupt 13 Settings
// <id> eic_arch_enable_irq_setting13
#ifndef CONF_EIC_ENABLE_IRQ_SETTING13
#define CONF_EIC_ENABLE_IRQ_SETTING13 0
#endif
// <q> External Interrupt 13 Filter Enable
// <i> Indicates whether the external interrupt 13 filter is enabled or not
// <id> eic_arch_filten13
#ifndef CONF_EIC_FILTEN13
#define CONF_EIC_FILTEN13 0
#endif
// <q> External Interrupt 13 Debounce Enable
// <i> Indicates whether the external interrupt 13 debounce is enabled or not
// <id> eic_arch_debounce_enable13
#ifndef CONF_EIC_DEBOUNCE_ENABLE13
#define CONF_EIC_DEBOUNCE_ENABLE13 0
#endif
// <q> External Interrupt 13 Event Output Enable
// <i> Indicates whether the external interrupt 13 event output is enabled or not
// <id> eic_arch_extinteo13
#ifndef CONF_EIC_EXTINTEO13
#define CONF_EIC_EXTINTEO13 0
#endif
// <y> Input 13 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense13
#ifndef CONF_EIC_SENSE13
#define CONF_EIC_SENSE13 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 13 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 13 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch13
#ifndef CONF_EIC_ASYNCH13
#define CONF_EIC_ASYNCH13 0
#endif
// </e>
// <e> Interrupt 14 Settings
// <id> eic_arch_enable_irq_setting14
#ifndef CONF_EIC_ENABLE_IRQ_SETTING14
#define CONF_EIC_ENABLE_IRQ_SETTING14 0
#endif
// <q> External Interrupt 14 Filter Enable
// <i> Indicates whether the external interrupt 14 filter is enabled or not
// <id> eic_arch_filten14
#ifndef CONF_EIC_FILTEN14
#define CONF_EIC_FILTEN14 0
#endif
// <q> External Interrupt 14 Debounce Enable
// <i> Indicates whether the external interrupt 14 debounce is enabled or not
// <id> eic_arch_debounce_enable14
#ifndef CONF_EIC_DEBOUNCE_ENABLE14
#define CONF_EIC_DEBOUNCE_ENABLE14 0
#endif
// <q> External Interrupt 14 Event Output Enable
// <i> Indicates whether the external interrupt 14 event output is enabled or not
// <id> eic_arch_extinteo14
#ifndef CONF_EIC_EXTINTEO14
#define CONF_EIC_EXTINTEO14 0
#endif
// <y> Input 14 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense14
#ifndef CONF_EIC_SENSE14
#define CONF_EIC_SENSE14 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 14 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 14 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch14
#ifndef CONF_EIC_ASYNCH14
#define CONF_EIC_ASYNCH14 0
#endif
// </e>
// <e> Interrupt 15 Settings
// <id> eic_arch_enable_irq_setting15
#ifndef CONF_EIC_ENABLE_IRQ_SETTING15
#define CONF_EIC_ENABLE_IRQ_SETTING15 0
#endif
// <q> External Interrupt 15 Filter Enable
// <i> Indicates whether the external interrupt 15 filter is enabled or not
// <id> eic_arch_filten15
#ifndef CONF_EIC_FILTEN15
#define CONF_EIC_FILTEN15 0
#endif
// <q> External Interrupt 15 Debounce Enable
// <i> Indicates whether the external interrupt 15 debounce is enabled or not
// <id> eic_arch_debounce_enable15
#ifndef CONF_EIC_DEBOUNCE_ENABLE15
#define CONF_EIC_DEBOUNCE_ENABLE15 0
#endif
// <q> External Interrupt 15 Event Output Enable
// <i> Indicates whether the external interrupt 15 event output is enabled or not
// <id> eic_arch_extinteo15
#ifndef CONF_EIC_EXTINTEO15
#define CONF_EIC_EXTINTEO15 0
#endif
// <y> Input 15 Sense Configuration
// <EIC_NMICTRL_NMISENSE_NONE_Val"> No detection
// <EIC_NMICTRL_NMISENSE_RISE_Val"> Rising-edge detection
// <EIC_NMICTRL_NMISENSE_FALL_Val"> Falling-edge detection
// <EIC_NMICTRL_NMISENSE_BOTH_Val"> Both-edges detection
// <EIC_NMICTRL_NMISENSE_HIGH_Val"> High-level detection
// <EIC_NMICTRL_NMISENSE_LOW_Val"> Low-level detection
// <i> This defines input sense trigger
// <id> eic_arch_sense15
#ifndef CONF_EIC_SENSE15
#define CONF_EIC_SENSE15 EIC_NMICTRL_NMISENSE_NONE_Val
#endif
// <q> External Interrupt 15 Asynchronous Edge Detection Mode
// <i> Indicates the external interrupt 15 detection mode operated synchronously or asynchronousl
// <id> eic_arch_asynch15
#ifndef CONF_EIC_ASYNCH15
#define CONF_EIC_ASYNCH15 0
#endif
// </e>
// <h> Debouncer 0 Settings
// <o> Debouncer Frequency Selection
// <0x0=>Divided by 2
// <0x1=>Divided by 4
// <0x2=>Divided by 8
// <0x3=>Divided by 16
// <0x4=>Divided by 32
// <0x5=>Divided by 64
// <0x6=>Divided by 128
// <0x7=>Divided by 256
// <i> Select the debouncer low frequency clock for pins
// <i> EXTINT[7:0].
// <id> eic_arch_prescaler0
#ifndef CONF_EIC_DPRESCALER0
#define CONF_EIC_DPRESCALER0 EIC_DPRESCALER_PRESCALER0(0x0)
#endif
// <o> Low frequency samples
// <0x0=>3
// <0x1=>7
// <i> Indicates the number of samples by the debouncer low frequency clock needed to validate a transition from
// <i> current pin state to next pin state in synchronous debouncing mode.
// <id> eic_arch_states0
#ifndef CONF_EIC_STATES0
#define CONF_EIC_STATES0 0x0
#endif
// </h>
// <h> Debouncer 1 Settings
// <o> Debouncer Frequency Selection
// <0x0=>Divided by 2
// <0x1=>Divided by 4
// <0x2=>Divided by 8
// <0x3=>Divided by 16
// <0x4=>Divided by 32
// <0x5=>Divided by 64
// <0x6=>Divided by 128
// <0x7=>Divided by 256
// <i> Select the debouncer low frequency clock for pins
// <i> EXTINT[15:8].
// <id> eic_arch_prescaler1
#ifndef CONF_EIC_DPRESCALER1
#define CONF_EIC_DPRESCALER1 EIC_DPRESCALER_PRESCALER1(0x0)
#endif
// <o> Low frequency samples
// <0x0=>3
// <0x1=>7
// <i> Indicates the number of samples by the debouncer low frequency clock needed to validate a transition from
// <i> current pin state to next pin state in synchronous debouncing mode.
// <id> eic_arch_states1
#ifndef CONF_EIC_STATES1
#define CONF_EIC_STATES1 0x0
#endif
// </h>
#define CONFIG_EIC_EXTINT_MAP {7, PIN_PA07}, {14, PIN_PB30}, {15, PIN_PB31},
// <<< end of configuration section >>>
#endif // HPL_EIC_CONFIG_H

View File

@ -0,0 +1,640 @@
/* Auto-generated config file hpl_oscctrl_config.h */
#ifndef HPL_OSCCTRL_CONFIG_H
#define HPL_OSCCTRL_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <e> External Multipurpose Crystal Oscillator Configuration
// <i> Indicates whether configuration for XOSC0 is enabled or not
// <id> enable_xosc0
#ifndef CONF_XOSC0_CONFIG
#define CONF_XOSC0_CONFIG 0
#endif
// <o> Frequency <8000000-48000000>
// <i> Oscillation frequency of the resonator connected to the External Multipurpose Crystal Oscillator.
// <id> xosc0_frequency
#ifndef CONF_XOSC_FREQUENCY
#define CONF_XOSC0_FREQUENCY 12000000
#endif
// <h> External Multipurpose Crystal Oscillator Control
// <q> Oscillator enable
// <i> Indicates whether External Multipurpose Crystal Oscillator is enabled or not
// <id> xosc0_arch_enable
#ifndef CONF_XOSC0_ENABLE
#define CONF_XOSC0_ENABLE 0
#endif
// <o> Start-Up Time
// <0x0=>31us
// <0x1=>61us
// <0x2=>122us
// <0x3=>244us
// <0x4=>488us
// <0x5=>977us
// <0x6=>1953us
// <0x7=>3906us
// <0x8=>7813us
// <0x9=>15625us
// <0xA=>31250us
// <0xB=>62500us
// <0xC=>125000us
// <0xD=>250000us
// <0xE=>500000us
// <0xF=>1000000us
// <id> xosc0_arch_startup
#ifndef CONF_XOSC0_STARTUP
#define CONF_XOSC0_STARTUP 0
#endif
// <q> Clock Switch Back
// <i> Indicates whether Clock Switch Back is enabled or not
// <id> xosc0_arch_swben
#ifndef CONF_XOSC0_SWBEN
#define CONF_XOSC0_SWBEN 0
#endif
// <q> Clock Failure Detector
// <i> Indicates whether Clock Failure Detector is enabled or not
// <id> xosc0_arch_cfden
#ifndef CONF_XOSC0_CFDEN
#define CONF_XOSC0_CFDEN 0
#endif
// <q> Automatic Loop Control Enable
// <i> Indicates whether Automatic Loop Control is enabled or not
// <id> xosc0_arch_enalc
#ifndef CONF_XOSC0_ENALC
#define CONF_XOSC0_ENALC 0
#endif
// <q> Low Buffer Gain Enable
// <i> Indicates whether Low Buffer Gain is enabled or not
// <id> xosc0_arch_lowbufgain
#ifndef CONF_XOSC0_LOWBUFGAIN
#define CONF_XOSC0_LOWBUFGAIN 0
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> xosc0_arch_ondemand
#ifndef CONF_XOSC0_ONDEMAND
#define CONF_XOSC0_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> xosc0_arch_runstdby
#ifndef CONF_XOSC0_RUNSTDBY
#define CONF_XOSC0_RUNSTDBY 0
#endif
// <q> Crystal connected to XIN/XOUT Enable
// <i> Indicates whether the connections between the I/O pads and the external clock or crystal oscillator is enabled or not
// <id> xosc0_arch_xtalen
#ifndef CONF_XOSC0_XTALEN
#define CONF_XOSC0_XTALEN 0
#endif
//</h>
//</e>
#if CONF_XOSC0_FREQUENCY >= 32000000
#define CONF_XOSC0_CFDPRESC 0x0
#define CONF_XOSC0_IMULT 0x7
#define CONF_XOSC0_IPTAT 0x3
#elif CONF_XOSC0_FREQUENCY >= 24000000
#define CONF_XOSC0_CFDPRESC 0x1
#define CONF_XOSC0_IMULT 0x6
#define CONF_XOSC0_IPTAT 0x3
#elif CONF_XOSC0_FREQUENCY >= 16000000
#define CONF_XOSC0_CFDPRESC 0x2
#define CONF_XOSC0_IMULT 0x5
#define CONF_XOSC0_IPTAT 0x3
#elif CONF_XOSC0_FREQUENCY >= 8000000
#define CONF_XOSC0_CFDPRESC 0x3
#define CONF_XOSC0_IMULT 0x4
#define CONF_XOSC0_IPTAT 0x3
#endif
// <e> External Multipurpose Crystal Oscillator Configuration
// <i> Indicates whether configuration for XOSC1 is enabled or not
// <id> enable_xosc1
#ifndef CONF_XOSC1_CONFIG
#define CONF_XOSC1_CONFIG 0
#endif
// <o> Frequency <8000000-48000000>
// <i> Oscillation frequency of the resonator connected to the External Multipurpose Crystal Oscillator.
// <id> xosc1_frequency
#ifndef CONF_XOSC_FREQUENCY
#define CONF_XOSC1_FREQUENCY 12000000
#endif
// <h> External Multipurpose Crystal Oscillator Control
// <q> Oscillator enable
// <i> Indicates whether External Multipurpose Crystal Oscillator is enabled or not
// <id> xosc1_arch_enable
#ifndef CONF_XOSC1_ENABLE
#define CONF_XOSC1_ENABLE 0
#endif
// <o> Start-Up Time
// <0x0=>31us
// <0x1=>61us
// <0x2=>122us
// <0x3=>244us
// <0x4=>488us
// <0x5=>977us
// <0x6=>1953us
// <0x7=>3906us
// <0x8=>7813us
// <0x9=>15625us
// <0xA=>31250us
// <0xB=>62500us
// <0xC=>125000us
// <0xD=>250000us
// <0xE=>500000us
// <0xF=>1000000us
// <id> xosc1_arch_startup
#ifndef CONF_XOSC1_STARTUP
#define CONF_XOSC1_STARTUP 0
#endif
// <q> Clock Switch Back
// <i> Indicates whether Clock Switch Back is enabled or not
// <id> xosc1_arch_swben
#ifndef CONF_XOSC1_SWBEN
#define CONF_XOSC1_SWBEN 0
#endif
// <q> Clock Failure Detector
// <i> Indicates whether Clock Failure Detector is enabled or not
// <id> xosc1_arch_cfden
#ifndef CONF_XOSC1_CFDEN
#define CONF_XOSC1_CFDEN 0
#endif
// <q> Automatic Loop Control Enable
// <i> Indicates whether Automatic Loop Control is enabled or not
// <id> xosc1_arch_enalc
#ifndef CONF_XOSC1_ENALC
#define CONF_XOSC1_ENALC 0
#endif
// <q> Low Buffer Gain Enable
// <i> Indicates whether Low Buffer Gain is enabled or not
// <id> xosc1_arch_lowbufgain
#ifndef CONF_XOSC1_LOWBUFGAIN
#define CONF_XOSC1_LOWBUFGAIN 0
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> xosc1_arch_ondemand
#ifndef CONF_XOSC1_ONDEMAND
#define CONF_XOSC1_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> xosc1_arch_runstdby
#ifndef CONF_XOSC1_RUNSTDBY
#define CONF_XOSC1_RUNSTDBY 0
#endif
// <q> Crystal connected to XIN/XOUT Enable
// <i> Indicates whether the connections between the I/O pads and the external clock or crystal oscillator is enabled or not
// <id> xosc1_arch_xtalen
#ifndef CONF_XOSC1_XTALEN
#define CONF_XOSC1_XTALEN 1
#endif
//</h>
//</e>
#if CONF_XOSC1_FREQUENCY >= 32000000
#define CONF_XOSC1_CFDPRESC 0x0
#define CONF_XOSC1_IMULT 0x7
#define CONF_XOSC1_IPTAT 0x3
#elif CONF_XOSC1_FREQUENCY >= 24000000
#define CONF_XOSC1_CFDPRESC 0x1
#define CONF_XOSC1_IMULT 0x6
#define CONF_XOSC1_IPTAT 0x3
#elif CONF_XOSC1_FREQUENCY >= 16000000
#define CONF_XOSC1_CFDPRESC 0x2
#define CONF_XOSC1_IMULT 0x5
#define CONF_XOSC1_IPTAT 0x3
#elif CONF_XOSC1_FREQUENCY >= 8000000
#define CONF_XOSC1_CFDPRESC 0x3
#define CONF_XOSC1_IMULT 0x4
#define CONF_XOSC1_IPTAT 0x3
#endif
// <e> DFLL Configuration
// <i> Indicates whether configuration for DFLL is enabled or not
// <id> enable_dfll
#ifndef CONF_DFLL_CONFIG
#define CONF_DFLL_CONFIG 1
#endif
// <y> Reference Clock Source
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source
// <id> dfll_ref_clock
#ifndef CONF_DFLL_GCLK
#define CONF_DFLL_GCLK GCLK_PCHCTRL_GEN_GCLK2_Val
#endif
// <h> Digital Frequency Locked Loop Control
// <q> DFLL Enable
// <i> Indicates whether DFLL is enabled or not
// <id> dfll_arch_enable
#ifndef CONF_DFLL_ENABLE
#define CONF_DFLL_ENABLE 1
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> dfll_arch_ondemand
#ifndef CONF_DFLL_ONDEMAND
#define CONF_DFLL_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> dfll_arch_runstdby
#ifndef CONF_DFLL_RUNSTDBY
#define CONF_DFLL_RUNSTDBY 0
#endif
// <q> USB Clock Recovery Mode
// <i> Indicates whether USB Clock Recovery Mode is enabled or not
// <id> dfll_arch_usbcrm
#ifndef CONF_DFLL_USBCRM
#define CONF_DFLL_USBCRM 0
#endif
// <q> Wait Lock
// <i> Indicates whether Wait Lock is enabled or not
// <id> dfll_arch_waitlock
#ifndef CONF_DFLL_WAITLOCK
#define CONF_DFLL_WAITLOCK 1
#endif
// <q> Bypass Coarse Lock
// <i> Indicates whether Bypass Coarse Lock is enabled or not
// <id> dfll_arch_bplckc
#ifndef CONF_DFLL_BPLCKC
#define CONF_DFLL_BPLCKC 0
#endif
// <q> Quick Lock Disable
// <i> Indicates whether Quick Lock Disable is enabled or not
// <id> dfll_arch_qldis
#ifndef CONF_DFLL_QLDIS
#define CONF_DFLL_QLDIS 0
#endif
// <q> Chill Cycle Disable
// <i> Indicates whether Chill Cycle Disable is enabled or not
// <id> dfll_arch_ccdis
#ifndef CONF_DFLL_CCDIS
#define CONF_DFLL_CCDIS 0
#endif
// <q> Lose Lock After Wake
// <i> Indicates whether Lose Lock After Wake is enabled or not
// <id> dfll_arch_llaw
#ifndef CONF_DFLL_LLAW
#define CONF_DFLL_LLAW 0
#endif
// <q> Stable DFLL Frequency
// <i> Indicates whether Stable DFLL Frequency is enabled or not
// <id> dfll_arch_stable
#ifndef CONF_DFLL_STABLE
#define CONF_DFLL_STABLE 0
#endif
// <o> Operating Mode Selection
// <0=>Open Loop Mode
// <1=>Closed Loop Mode
// <id> dfll_mode
#ifndef CONF_DFLL_MODE
#define CONF_DFLL_MODE 0x0
#endif
// <o> Coarse Maximum Step <0x0-0x1F>
// <id> dfll_arch_cstep
#ifndef CONF_DFLL_CSTEP
#define CONF_DFLL_CSTEP 0x1
#endif
// <o> Fine Maximum Step <0x0-0xFF>
// <id> dfll_arch_fstep
#ifndef CONF_DFLL_FSTEP
#define CONF_DFLL_FSTEP 0x1
#endif
// <o> DFLL Multiply Factor <0x0-0xFFFF>
// <id> dfll_mul
#ifndef CONF_DFLL_MUL
#define CONF_DFLL_MUL 0x0
#endif
// <e> DFLL Calibration Overwrite
// <i> Indicates whether Overwrite Calibration value of DFLL
// <id> dfll_arch_calibration
#ifndef CONF_DFLL_OVERWRITE_CALIBRATION
#define CONF_DFLL_OVERWRITE_CALIBRATION 0
#endif
// <o> Coarse Value <0x0-0x3F>
// <id> dfll_arch_coarse
#ifndef CONF_DFLL_COARSE
#define CONF_DFLL_COARSE (0x1f / 4)
#endif
// <o> Fine Value <0x0-0xFF>
// <id> dfll_arch_fine
#ifndef CONF_DFLL_FINE
#define CONF_DFLL_FINE (0x80)
#endif
//</e>
//</h>
//</e>
// <e> FDPLL0 Configuration
// <i> Indicates whether configuration for FDPLL0 is enabled or not
// <id> enable_fdpll0
#ifndef CONF_FDPLL0_CONFIG
#define CONF_FDPLL0_CONFIG 0
#endif
// <y> Reference Clock Source
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source.
// <id> fdpll0_ref_clock
#ifndef CONF_FDPLL0_GCLK
#define CONF_FDPLL0_GCLK GCLK_GENCTRL_SRC_XOSC32K
#endif
// <h> Digital Phase Locked Loop Control
// <q> Enable
// <i> Indicates whether Digital Phase Locked Loop is enabled or not
// <id> fdpll0_arch_enable
#ifndef CONF_FDPLL0_ENABLE
#define CONF_FDPLL0_ENABLE 0
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> fdpll0_arch_ondemand
#ifndef CONF_FDPLL0_ONDEMAND
#define CONF_FDPLL0_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> fdpll0_arch_runstdby
#ifndef CONF_FDPLL0_RUNSTDBY
#define CONF_FDPLL0_RUNSTDBY 0
#endif
// <o> Loop Divider Ratio Fractional Part <0x0-0x1F>
// <i> Value of LDRFRAC is calculated using Fclk_dpll=Fckr*(LDR+1+LDRFRAC/32) formula as given in datasheet. This value is directly written in to DPLLRATIO register
// <id> fdpll0_ldrfrac
#ifndef CONF_FDPLL0_LDRFRAC
#define CONF_FDPLL0_LDRFRAC 0xd
#endif
// <o> Loop Divider Ratio Integer Part <0x0-0x1FFF>
// <i> Value of LDR is calculated using Fclk_dpll=Fckr*(LDR+1+LDRFRAC/32) formula as given in datasheet. This value is directly written in to DPLLRATIO register
// <id> fdpll0_ldr
#ifndef CONF_FDPLL0_LDR
#define CONF_FDPLL0_LDR 0x5b7
#endif
// <o> Clock Divider <0x0-0x7FF>
// <i> This Clock divider is only for XOSC clock input to DPLL
// <id> fdpll0_clock_div
#ifndef CONF_FDPLL0_DIV
#define CONF_FDPLL0_DIV 0x0
#endif
// <q> DCO Filter Enable
// <i> Indicates whether DCO Filter Enable is enabled or not
// <id> fdpll0_arch_dcoen
#ifndef CONF_FDPLL0_DCOEN
#define CONF_FDPLL0_DCOEN 0
#endif
// <o> Sigma-Delta DCO Filter Selection <0x0-0x7>
// <id> fdpll0_clock_dcofilter
#ifndef CONF_FDPLL0_DCOFILTER
#define CONF_FDPLL0_DCOFILTER 0x0
#endif
// <q> Lock Bypass
// <i> Indicates whether Lock Bypass is enabled or not
// <id> fdpll0_arch_lbypass
#ifndef CONF_FDPLL0_LBYPASS
#define CONF_FDPLL0_LBYPASS 0
#endif
// <o> Lock Time
// <0x0=>No time-out, automatic lock
// <0x4=>The Time-out if no lock within 800 us
// <0x5=>The Time-out if no lock within 900 us
// <0x6=>The Time-out if no lock within 1 ms
// <0x7=>The Time-out if no lock within 11 ms
// <id> fdpll0_arch_ltime
#ifndef CONF_FDPLL0_LTIME
#define CONF_FDPLL0_LTIME 0x0
#endif
// <o> Reference Clock Selection
// <0x0=>GCLK clock reference
// <0x1=>XOSC32K clock reference
// <0x2=>XOSC0 clock reference
// <0x3=>XOSC1 clock reference
// <id> fdpll0_arch_refclk
#ifndef CONF_FDPLL0_REFCLK
#define CONF_FDPLL0_REFCLK 0x1
#endif
// <q> Wake Up Fast
// <i> Indicates whether Wake Up Fast is enabled or not
// <id> fdpll0_arch_wuf
#ifndef CONF_FDPLL0_WUF
#define CONF_FDPLL0_WUF 0
#endif
// <o> Proportional Integral Filter Selection <0x0-0xF>
// <id> fdpll0_arch_filter
#ifndef CONF_FDPLL0_FILTER
#define CONF_FDPLL0_FILTER 0x0
#endif
//</h>
//</e>
// <e> FDPLL1 Configuration
// <i> Indicates whether configuration for FDPLL1 is enabled or not
// <id> enable_fdpll1
#ifndef CONF_FDPLL1_CONFIG
#define CONF_FDPLL1_CONFIG 1
#endif
// <y> Reference Clock Source
// <GCLK_GENCTRL_SRC_XOSC32K"> 32kHz External Crystal Oscillator (XOSC32K)
// <GCLK_GENCTRL_SRC_XOSC0"> External Crystal Oscillator 8-48MHz (XOSC0)
// <GCLK_GENCTRL_SRC_XOSC1"> External Crystal Oscillator 8-48MHz (XOSC1)
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source.
// <id> fdpll1_ref_clock
#ifndef CONF_FDPLL1_GCLK
#define CONF_FDPLL1_GCLK GCLK_PCHCTRL_GEN_GCLK1_Val
#endif
// <h> Digital Phase Locked Loop Control
// <q> Enable
// <i> Indicates whether Digital Phase Locked Loop is enabled or not
// <id> fdpll1_arch_enable
#ifndef CONF_FDPLL1_ENABLE
#define CONF_FDPLL1_ENABLE 1
#endif
// <q> On Demand Control
// <i> Indicates whether On Demand Control is enabled or not
// <id> fdpll1_arch_ondemand
#ifndef CONF_FDPLL1_ONDEMAND
#define CONF_FDPLL1_ONDEMAND 0
#endif
// <q> Run in Standby
// <i> Indicates whether Run in Standby is enabled or not
// <id> fdpll1_arch_runstdby
#ifndef CONF_FDPLL1_RUNSTDBY
#define CONF_FDPLL1_RUNSTDBY 0
#endif
// <o> Loop Divider Ratio Fractional Part <0x0-0x1F>
// <i> Value of LDRFRAC is calculated using Fclk_dpll=Fckr*(LDR+1+LDRFRAC/32) formula as given in datasheet. This value is directly written in to DPLLRATIO register
// <id> fdpll1_ldrfrac
#ifndef CONF_FDPLL1_LDRFRAC
#define CONF_FDPLL1_LDRFRAC 0x0
#endif
// <o> Loop Divider Ratio Integer Part <0x0-0x1FFF>
// <i> Value of LDR is calculated using Fclk_dpll=Fckr*(LDR+1+LDRFRAC/32) formula as given in datasheet. This value is directly written in to DPLLRATIO register
// <id> fdpll1_ldr
#ifndef CONF_FDPLL1_LDR
#define CONF_FDPLL1_LDR 0x3b
#endif
// <o> Clock Divider <0x0-0x7FF>
// <i> This Clock divider is only for XOSC clock input to DPLL
// <id> fdpll1_clock_div
#ifndef CONF_FDPLL1_DIV
#define CONF_FDPLL1_DIV 0x0
#endif
// <q> DCO Filter Enable
// <i> Indicates whether DCO Filter Enable is enabled or not
// <id> fdpll1_arch_dcoen
#ifndef CONF_FDPLL1_DCOEN
#define CONF_FDPLL1_DCOEN 0
#endif
// <o> Sigma-Delta DCO Filter Selection <0x0-0x7>
// <id> fdpll1_clock_dcofilter
#ifndef CONF_FDPLL1_DCOFILTER
#define CONF_FDPLL1_DCOFILTER 0x0
#endif
// <q> Lock Bypass
// <i> Indicates whether Lock Bypass is enabled or not
// <id> fdpll1_arch_lbypass
#ifndef CONF_FDPLL1_LBYPASS
#define CONF_FDPLL1_LBYPASS 0
#endif
// <o> Lock Time
// <0x0=>No time-out, automatic lock
// <0x4=>The Time-out if no lock within 800 us
// <0x5=>The Time-out if no lock within 900 us
// <0x6=>The Time-out if no lock within 1 ms
// <0x7=>The Time-out if no lock within 11 ms
// <id> fdpll1_arch_ltime
#ifndef CONF_FDPLL1_LTIME
#define CONF_FDPLL1_LTIME 0x0
#endif
// <o> Reference Clock Selection
// <0x0=>GCLK clock reference
// <0x1=>XOSC32K clock reference
// <0x2=>XOSC0 clock reference
// <0x3=>XOSC1 clock reference
// <id> fdpll1_arch_refclk
#ifndef CONF_FDPLL1_REFCLK
#define CONF_FDPLL1_REFCLK 0x0
#endif
// <q> Wake Up Fast
// <i> Indicates whether Wake Up Fast is enabled or not
// <id> fdpll1_arch_wuf
#ifndef CONF_FDPLL1_WUF
#define CONF_FDPLL1_WUF 0
#endif
// <o> Proportional Integral Filter Selection <0x0-0xF>
// <id> fdpll1_arch_filter
#ifndef CONF_FDPLL1_FILTER
#define CONF_FDPLL1_FILTER 0x0
#endif
//</h>
//</e>
// <<< end of configuration section >>>
#endif // HPL_OSCCTRL_CONFIG_H

View File

@ -0,0 +1,284 @@
/* Auto-generated config file hpl_port_config.h */
#ifndef HPL_PORT_CONFIG_H
#define HPL_PORT_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <e> PORT Input Event 0 configuration
// <id> enable_port_input_event_0
#ifndef CONF_PORT_EVCTRL_PORT_0
#define CONF_PORT_EVCTRL_PORT_0 0
#endif
// <h> PORT Input Event 0 configuration on PORT A
// <q> PORTA Input Event 0 Enable
// <i> The event action will be triggered on any incoming event if PORT A Input Event 0 configuration is enabled
// <id> porta_input_event_enable_0
#ifndef CONF_PORTA_EVCTRL_PORTEI_0
#define CONF_PORTA_EVCTRL_PORTEI_0 0x0
#endif
// <o> PORTA Event 0 Pin Identifier <0x00-0x1F>
// <i> These bits define the I/O pin from port A on which the event action will be performed
// <id> porta_event_pin_identifier_0
#ifndef CONF_PORTA_EVCTRL_PID_0
#define CONF_PORTA_EVCTRL_PID_0 0x0
#endif
// <o> PORTA Event 0 Action
// <0=> Output register of pin will be set to level of event
// <1=> Set output register of pin on event
// <2=> Clear output register of pin on event
// <3=> Toggle output register of pin on event
// <i> These bits define the event action the PORT A will perform on event input 0
// <id> porta_event_action_0
#ifndef CONF_PORTA_EVCTRL_EVACT_0
#define CONF_PORTA_EVCTRL_EVACT_0 0
#endif
// </h>
// <h> PORT Input Event 0 configuration on PORT B
// <q> PORTB Input Event 0 Enable
// <i> The event action will be triggered on any incoming event if PORT B Input Event 0 configuration is enabled
// <id> portb_input_event_enable_0
#ifndef CONF_PORTB_EVCTRL_PORTEI_0
#define CONF_PORTB_EVCTRL_PORTEI_0 0x0
#endif
// <o> PORTB Event 0 Pin Identifier <0x00-0x1F>
// <i> These bits define the I/O pin from port B on which the event action will be performed
// <id> portb_event_pin_identifier_0
#ifndef CONF_PORTB_EVCTRL_PID_0
#define CONF_PORTB_EVCTRL_PID_0 0x0
#endif
// <o> PORTB Event 0 Action
// <0=> Output register of pin will be set to level of event
// <1=> Set output register of pin on event
// <2=> Clear output register of pin on event
// <3=> Toggle output register of pin on event
// <i> These bits define the event action the PORT B will perform on event input 0
// <id> portb_event_action_0
#ifndef CONF_PORTB_EVCTRL_EVACT_0
#define CONF_PORTB_EVCTRL_EVACT_0 0
#endif
// </h>
// </e>
// <e> PORT Input Event 1 configuration
// <id> enable_port_input_event_1
#ifndef CONF_PORT_EVCTRL_PORT_1
#define CONF_PORT_EVCTRL_PORT_1 0
#endif
// <h> PORT Input Event 1 configuration on PORT A
// <q> PORTA Input Event 1 Enable
// <i> The event action will be triggered on any incoming event if PORT A Input Event 1 configuration is enabled
// <id> porta_input_event_enable_1
#ifndef CONF_PORTA_EVCTRL_PORTEI_1
#define CONF_PORTA_EVCTRL_PORTEI_1 0x0
#endif
// <o> PORTA Event 1 Pin Identifier <0x00-0x1F>
// <i> These bits define the I/O pin from port A on which the event action will be performed
// <id> porta_event_pin_identifier_1
#ifndef CONF_PORTA_EVCTRL_PID_1
#define CONF_PORTA_EVCTRL_PID_1 0x0
#endif
// <o> PORTA Event 1 Action
// <0=> Output register of pin will be set to level of event
// <1=> Set output register of pin on event
// <2=> Clear output register of pin on event
// <3=> Toggle output register of pin on event
// <i> These bits define the event action the PORT A will perform on event input 1
// <id> porta_event_action_1
#ifndef CONF_PORTA_EVCTRL_EVACT_1
#define CONF_PORTA_EVCTRL_EVACT_1 0
#endif
// </h>
// <h> PORT Input Event 1 configuration on PORT B
// <q> PORTB Input Event 1 Enable
// <i> The event action will be triggered on any incoming event if PORT B Input Event 1 configuration is enabled
// <id> portb_input_event_enable_1
#ifndef CONF_PORTB_EVCTRL_PORTEI_1
#define CONF_PORTB_EVCTRL_PORTEI_1 0x0
#endif
// <o> PORTB Event 1 Pin Identifier <0x00-0x1F>
// <i> These bits define the I/O pin from port B on which the event action will be performed
// <id> portb_event_pin_identifier_1
#ifndef CONF_PORTB_EVCTRL_PID_1
#define CONF_PORTB_EVCTRL_PID_1 0x0
#endif
// <o> PORTB Event 1 Action
// <0=> Output register of pin will be set to level of event
// <1=> Set output register of pin on event
// <2=> Clear output register of pin on event
// <3=> Toggle output register of pin on event
// <i> These bits define the event action the PORT B will perform on event input 1
// <id> portb_event_action_1
#ifndef CONF_PORTB_EVCTRL_EVACT_1
#define CONF_PORTB_EVCTRL_EVACT_1 0
#endif
// </h>
// </e>
// <e> PORT Input Event 2 configuration
// <id> enable_port_input_event_2
#ifndef CONF_PORT_EVCTRL_PORT_2
#define CONF_PORT_EVCTRL_PORT_2 0
#endif
// <h> PORT Input Event 2 configuration on PORT A
// <q> PORTA Input Event 2 Enable
// <i> The event action will be triggered on any incoming event if PORT A Input Event 2 configuration is enabled
// <id> porta_input_event_enable_2
#ifndef CONF_PORTA_EVCTRL_PORTEI_2
#define CONF_PORTA_EVCTRL_PORTEI_2 0x0
#endif
// <o> PORTA Event 2 Pin Identifier <0x00-0x1F>
// <i> These bits define the I/O pin from port A on which the event action will be performed
// <id> porta_event_pin_identifier_2
#ifndef CONF_PORTA_EVCTRL_PID_2
#define CONF_PORTA_EVCTRL_PID_2 0x0
#endif
// <o> PORTA Event 2 Action
// <0=> Output register of pin will be set to level of event
// <1=> Set output register of pin on event
// <2=> Clear output register of pin on event
// <3=> Toggle output register of pin on event
// <i> These bits define the event action the PORT A will perform on event input 2
// <id> porta_event_action_2
#ifndef CONF_PORTA_EVCTRL_EVACT_2
#define CONF_PORTA_EVCTRL_EVACT_2 0
#endif
// </h>
// <h> PORT Input Event 2 configuration on PORT B
// <q> PORTB Input Event 2 Enable
// <i> The event action will be triggered on any incoming event if PORT B Input Event 2 configuration is enabled
// <id> portb_input_event_enable_2
#ifndef CONF_PORTB_EVCTRL_PORTEI_2
#define CONF_PORTB_EVCTRL_PORTEI_2 0x0
#endif
// <o> PORTB Event 2 Pin Identifier <0x00-0x1F>
// <i> These bits define the I/O pin from port B on which the event action will be performed
// <id> portb_event_pin_identifier_2
#ifndef CONF_PORTB_EVCTRL_PID_2
#define CONF_PORTB_EVCTRL_PID_2 0x0
#endif
// <o> PORTB Event 2 Action
// <0=> Output register of pin will be set to level of event
// <1=> Set output register of pin on event
// <2=> Clear output register of pin on event
// <3=> Toggle output register of pin on event
// <i> These bits define the event action the PORT B will perform on event input 2
// <id> portb_event_action_2
#ifndef CONF_PORTB_EVCTRL_EVACT_2
#define CONF_PORTB_EVCTRL_EVACT_2 0
#endif
// </h>
// </e>
// <e> PORT Input Event 3 configuration
// <id> enable_port_input_event_3
#ifndef CONF_PORT_EVCTRL_PORT_3
#define CONF_PORT_EVCTRL_PORT_3 0
#endif
// <h> PORT Input Event 3 configuration on PORT A
// <q> PORTA Input Event 3 Enable
// <i> The event action will be triggered on any incoming event if PORT A Input Event 3 configuration is enabled
// <id> porta_input_event_enable_3
#ifndef CONF_PORTA_EVCTRL_PORTEI_3
#define CONF_PORTA_EVCTRL_PORTEI_3 0x0
#endif
// <o> PORTA Event 3 Pin Identifier <0x00-0x1F>
// <i> These bits define the I/O pin from port A on which the event action will be performed
// <id> porta_event_pin_identifier_3
#ifndef CONF_PORTA_EVCTRL_PID_3
#define CONF_PORTA_EVCTRL_PID_3 0x0
#endif
// <o> PORTA Event 3 Action
// <0=> Output register of pin will be set to level of event
// <1=> Set output register of pin on event
// <2=> Clear output register of pin on event
// <3=> Toggle output register of pin on event
// <i> These bits define the event action the PORT A will perform on event input 3
// <id> porta_event_action_3
#ifndef CONF_PORTA_EVCTRL_EVACT_3
#define CONF_PORTA_EVCTRL_EVACT_3 0
#endif
// </h>
// <h> PORT Input Event 3 configuration on PORT B
// <q> PORTB Input Event 3 Enable
// <i> The event action will be triggered on any incoming event if PORT B Input Event 3 configuration is enabled
// <id> portb_input_event_enable_3
#ifndef CONF_PORTB_EVCTRL_PORTEI_3
#define CONF_PORTB_EVCTRL_PORTEI_3 0x0
#endif
// <o> PORTB Event 3 Pin Identifier <0x00-0x1F>
// <i> These bits define the I/O pin from port B on which the event action will be performed
// <id> portb_event_pin_identifier_3
#ifndef CONF_PORTB_EVCTRL_PID_3
#define CONF_PORTB_EVCTRL_PID_3 0x0
#endif
// <o> PORTB Event 3 Action
// <0=> Output register of pin will be set to level of event
// <1=> Set output register of pin on event
// <2=> Clear output register of pin on event
// <3=> Toggle output register of pin on event
// <i> These bits define the event action the PORT B will perform on event input 3
// <id> portb_event_action_3
#ifndef CONF_PORTB_EVCTRL_EVACT_3
#define CONF_PORTB_EVCTRL_EVACT_3 0
#endif
// </h>
// </e>
#define CONF_PORTA_EVCTRL \
(0 | PORT_EVCTRL_EVACT0(CONF_PORTA_EVCTRL_EVACT_0) | CONF_PORTA_EVCTRL_PORTEI_0 << PORT_EVCTRL_PORTEI0_Pos \
| PORT_EVCTRL_PID0(CONF_PORTA_EVCTRL_PID_0) | PORT_EVCTRL_EVACT1(CONF_PORTA_EVCTRL_EVACT_1) \
| CONF_PORTA_EVCTRL_PORTEI_1 << PORT_EVCTRL_PORTEI1_Pos | PORT_EVCTRL_PID1(CONF_PORTA_EVCTRL_PID_1) \
| PORT_EVCTRL_EVACT2(CONF_PORTA_EVCTRL_EVACT_2) | CONF_PORTA_EVCTRL_PORTEI_2 << PORT_EVCTRL_PORTEI2_Pos \
| PORT_EVCTRL_PID2(CONF_PORTA_EVCTRL_PID_2) | PORT_EVCTRL_EVACT3(CONF_PORTA_EVCTRL_EVACT_3) \
| CONF_PORTA_EVCTRL_PORTEI_3 << PORT_EVCTRL_PORTEI3_Pos | PORT_EVCTRL_PID3(CONF_PORTA_EVCTRL_PID_3))
#define CONF_PORTB_EVCTRL \
(0 | PORT_EVCTRL_EVACT0(CONF_PORTB_EVCTRL_EVACT_0) | CONF_PORTB_EVCTRL_PORTEI_0 << PORT_EVCTRL_PORTEI0_Pos \
| PORT_EVCTRL_PID0(CONF_PORTB_EVCTRL_PID_0) | PORT_EVCTRL_EVACT1(CONF_PORTB_EVCTRL_EVACT_1) \
| CONF_PORTB_EVCTRL_PORTEI_1 << PORT_EVCTRL_PORTEI1_Pos | PORT_EVCTRL_PID1(CONF_PORTB_EVCTRL_PID_1) \
| PORT_EVCTRL_EVACT2(CONF_PORTB_EVCTRL_EVACT_2) | CONF_PORTB_EVCTRL_PORTEI_2 << PORT_EVCTRL_PORTEI2_Pos \
| PORT_EVCTRL_PID2(CONF_PORTB_EVCTRL_PID_2) | PORT_EVCTRL_EVACT3(CONF_PORTB_EVCTRL_EVACT_3) \
| CONF_PORTB_EVCTRL_PORTEI_3 << PORT_EVCTRL_PORTEI3_Pos | PORT_EVCTRL_PID3(CONF_PORTB_EVCTRL_PID_3))
// <<< end of configuration section >>>
#endif // HPL_PORT_CONFIG_H

View File

@ -0,0 +1,84 @@
/* Auto-generated config file hpl_qspi_config.h */
#ifndef HPL_QSPI_CONFIG_H
#define HPL_QSPI_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
#include <peripheral_clk_config.h>
// <h> Basic settings
#ifndef CONF_CONF_QSPI_ENABLE
#define CONF_CONF_QSPI_ENABLE 1
#endif
// <o> Baud rate <1-150000000>
// <i> The SPI data transfer rate. Note: (fqspi_clock / baudrate) < 255
// <id> qspi_baud_rate
#ifndef CONF_QSPI_BAUD
#define CONF_QSPI_BAUD 6000000
#endif
// <o> Clock Polarity
// <0x0=>The inactive state value of SPCK is logic level zero.
// <0x1=>The inactive state value of SPCK is logic level one.
// <i> Determines the inactive state value of the serial clock (SPCK).
// <id> qspi_cpol
#ifndef CONF_QSPI_CPOL
#define CONF_QSPI_CPOL 0x0
#endif
// <o> Clock Phase
// <0x0=>Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.
// <0x1=>Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.
// <i> Determines which edge of SPCK causes data to change and which edge causes data to be captured.
// <id> qspi_cpha
#ifndef CONF_QSPI_CPHA
#define CONF_QSPI_CPHA 0x0
#endif
// </h>
// <e> Advanced Configuration
// <id> qspi_advanced
#ifndef CONF_QSPI_ADVANCED
#define CONF_QSPI_ADVANCED 0
#endif
// <o> Delay Before QSCK (ns) <0-255000>
// <i> This field defines the delay from QCS falling edge (activation) to the first valid QSCK transition (in ns).
// <id> qspi_dlybs
#ifndef CONF_QSPI_DLY_BS
#define CONF_QSPI_DLY_BS 0
#endif
// <o> Minimum Inactive QCS Delay (ns) <0-8160000>
// <i> This field defines the minimum delay between the deactivation and the activation of QCS (in ns).
// <id> qspi_dlycs
#ifndef CONF_QSPI_DLY_CS
#define CONF_QSPI_DLY_CS 0
#endif
// </e>
/* Calculate baud register value from requested baudrate value */
#ifndef CONF_QSPI_BAUD_RATE
#define CONF_QSPI_BAUD_RATE ((CONF_CPU_FREQUENCY / CONF_QSPI_BAUD) - 1)
#if CONF_QSPI_BAUD > CONF_CPU_FREQUENCY || CONF_QSPI_BAUD_RATE > 255
#warning Invalid baudrate, please check.
#endif
#endif
/* Calculates the value of the CSR DLYCS field given the desired delay (in ns) */
#ifndef CONF_QSPI_DLYCS
#define CONF_QSPI_DLYCS (((CONF_CPU_FREQUENCY / 1000000) * CONF_QSPI_DLY_CS) / 1000)
#endif
/* Calculates the value of the CSR DLYBS field given the desired delay (in ns) */
#ifndef CONF_QSPI_DLYBS
#define CONF_QSPI_DLYBS (((CONF_CPU_FREQUENCY / 1000000) * CONF_QSPI_DLY_BS) / 1000)
#endif
// <<< end of configuration section >>>
#endif // HPL_QSPI_CONFIG_H

View File

@ -0,0 +1,486 @@
/* Auto-generated config file hpl_sercom_config.h */
#ifndef HPL_SERCOM_CONFIG_H
#define HPL_SERCOM_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
#include <peripheral_clk_config.h>
// Enable configuration of module
#ifndef CONF_SERCOM_1_SPI_ENABLE
#define CONF_SERCOM_1_SPI_ENABLE 1
#endif
// Set module in SPI Master mode
#ifndef CONF_SERCOM_1_SPI_MODE
#define CONF_SERCOM_1_SPI_MODE 0x03
#endif
// <h> Basic Configuration
// <q> Receive buffer enable
// <i> Enable receive buffer to receive data from slave (RXEN)
// <id> spi_master_rx_enable
#ifndef CONF_SERCOM_1_SPI_RXEN
#define CONF_SERCOM_1_SPI_RXEN 0x1
#endif
// <o> Character Size
// <i> Bit size for all characters sent over the SPI bus (CHSIZE)
// <0x0=>8 bits
// <0x1=>9 bits
// <id> spi_master_character_size
#ifndef CONF_SERCOM_1_SPI_CHSIZE
#define CONF_SERCOM_1_SPI_CHSIZE 0x0
#endif
// <o> Baud rate <1-18000000>
// <i> The SPI data transfer rate
// <id> spi_master_baud_rate
#ifndef CONF_SERCOM_1_SPI_BAUD
#define CONF_SERCOM_1_SPI_BAUD 50000
#endif
// </h>
// <e> Advanced Configuration
// <id> spi_master_advanced
#ifndef CONF_SERCOM_1_SPI_ADVANCED
#define CONF_SERCOM_1_SPI_ADVANCED 0
#endif
// <o> Dummy byte <0x00-0x1ff>
// <id> spi_master_dummybyte
// <i> Dummy byte used when reading data from the slave without sending any data
#ifndef CONF_SERCOM_1_SPI_DUMMYBYTE
#define CONF_SERCOM_1_SPI_DUMMYBYTE 0x1ff
#endif
// <o> Data Order
// <0=>MSB first
// <1=>LSB first
// <i> I least significant or most significant bit is shifted out first (DORD)
// <id> spi_master_arch_dord
#ifndef CONF_SERCOM_1_SPI_DORD
#define CONF_SERCOM_1_SPI_DORD 0x0
#endif
// <o> Clock Polarity
// <0=>SCK is low when idle
// <1=>SCK is high when idle
// <i> Determines if the leading edge is rising or falling with a corresponding opposite edge at the trailing edge. (CPOL)
// <id> spi_master_arch_cpol
#ifndef CONF_SERCOM_1_SPI_CPOL
#define CONF_SERCOM_1_SPI_CPOL 0x0
#endif
// <o> Clock Phase
// <0x0=>Sample input on leading edge
// <0x1=>Sample input on trailing edge
// <i> Determines if input data is sampled on leading or trailing SCK edge. (CPHA)
// <id> spi_master_arch_cpha
#ifndef CONF_SERCOM_1_SPI_CPHA
#define CONF_SERCOM_1_SPI_CPHA 0x0
#endif
// <o> Immediate Buffer Overflow Notification
// <i> Controls when OVF is asserted (IBON)
// <0x0=>In data stream
// <0x1=>On buffer overflow
// <id> spi_master_arch_ibon
#ifndef CONF_SERCOM_1_SPI_IBON
#define CONF_SERCOM_1_SPI_IBON 0x0
#endif
// <q> Run in stand-by
// <i> Module stays active in stand-by sleep mode. (RUNSTDBY)
// <id> spi_master_arch_runstdby
#ifndef CONF_SERCOM_1_SPI_RUNSTDBY
#define CONF_SERCOM_1_SPI_RUNSTDBY 0x0
#endif
// <o> Debug Stop Mode
// <i> Behavior of the baud-rate generator when CPU is halted by external debugger. (DBGSTOP)
// <0=>Keep running
// <1=>Halt
// <id> spi_master_arch_dbgstop
#ifndef CONF_SERCOM_1_SPI_DBGSTOP
#define CONF_SERCOM_1_SPI_DBGSTOP 0
#endif
// </e>
// Address mode disabled in master mode
#ifndef CONF_SERCOM_1_SPI_AMODE_EN
#define CONF_SERCOM_1_SPI_AMODE_EN 0
#endif
#ifndef CONF_SERCOM_1_SPI_AMODE
#define CONF_SERCOM_1_SPI_AMODE 0
#endif
#ifndef CONF_SERCOM_1_SPI_ADDR
#define CONF_SERCOM_1_SPI_ADDR 0
#endif
#ifndef CONF_SERCOM_1_SPI_ADDRMASK
#define CONF_SERCOM_1_SPI_ADDRMASK 0
#endif
#ifndef CONF_SERCOM_1_SPI_SSDE
#define CONF_SERCOM_1_SPI_SSDE 0
#endif
#ifndef CONF_SERCOM_1_SPI_MSSEN
#define CONF_SERCOM_1_SPI_MSSEN 0x0
#endif
#ifndef CONF_SERCOM_1_SPI_PLOADEN
#define CONF_SERCOM_1_SPI_PLOADEN 0
#endif
// <o> Receive Data Pinout
// <0x0=>PAD[0]
// <0x1=>PAD[1]
// <0x2=>PAD[2]
// <0x3=>PAD[3]
// <id> spi_master_rxpo
#ifndef CONF_SERCOM_1_SPI_RXPO
#define CONF_SERCOM_1_SPI_RXPO 3
#endif
// <o> Transmit Data Pinout
// <0x0=>PAD[0,1]_DO_SCK
// <0x1=>PAD[2,3]_DO_SCK
// <0x2=>PAD[3,1]_DO_SCK
// <0x3=>PAD[0,3]_DO_SCK
// <id> spi_master_txpo
#ifndef CONF_SERCOM_1_SPI_TXPO
#define CONF_SERCOM_1_SPI_TXPO 0
#endif
// Calculate baud register value from requested baudrate value
#ifndef CONF_SERCOM_1_SPI_BAUD_RATE
#define CONF_SERCOM_1_SPI_BAUD_RATE ((float)CONF_GCLK_SERCOM1_CORE_FREQUENCY / (float)(2 * CONF_SERCOM_1_SPI_BAUD)) - 1
#endif
#include <peripheral_clk_config.h>
// Enable configuration of module
#ifndef CONF_SERCOM_2_SPI_ENABLE
#define CONF_SERCOM_2_SPI_ENABLE 1
#endif
// Set module in SPI Master mode
#ifndef CONF_SERCOM_2_SPI_MODE
#define CONF_SERCOM_2_SPI_MODE 0x03
#endif
// <h> Basic Configuration
// <q> Receive buffer enable
// <i> Enable receive buffer to receive data from slave (RXEN)
// <id> spi_master_rx_enable
#ifndef CONF_SERCOM_2_SPI_RXEN
#define CONF_SERCOM_2_SPI_RXEN 0x1
#endif
// <o> Character Size
// <i> Bit size for all characters sent over the SPI bus (CHSIZE)
// <0x0=>8 bits
// <0x1=>9 bits
// <id> spi_master_character_size
#ifndef CONF_SERCOM_2_SPI_CHSIZE
#define CONF_SERCOM_2_SPI_CHSIZE 0x0
#endif
// <o> Baud rate <1-18000000>
// <i> The SPI data transfer rate
// <id> spi_master_baud_rate
#ifndef CONF_SERCOM_2_SPI_BAUD
#define CONF_SERCOM_2_SPI_BAUD 50000
#endif
// </h>
// <e> Advanced Configuration
// <id> spi_master_advanced
#ifndef CONF_SERCOM_2_SPI_ADVANCED
#define CONF_SERCOM_2_SPI_ADVANCED 0
#endif
// <o> Dummy byte <0x00-0x1ff>
// <id> spi_master_dummybyte
// <i> Dummy byte used when reading data from the slave without sending any data
#ifndef CONF_SERCOM_2_SPI_DUMMYBYTE
#define CONF_SERCOM_2_SPI_DUMMYBYTE 0x1ff
#endif
// <o> Data Order
// <0=>MSB first
// <1=>LSB first
// <i> I least significant or most significant bit is shifted out first (DORD)
// <id> spi_master_arch_dord
#ifndef CONF_SERCOM_2_SPI_DORD
#define CONF_SERCOM_2_SPI_DORD 0x0
#endif
// <o> Clock Polarity
// <0=>SCK is low when idle
// <1=>SCK is high when idle
// <i> Determines if the leading edge is rising or falling with a corresponding opposite edge at the trailing edge. (CPOL)
// <id> spi_master_arch_cpol
#ifndef CONF_SERCOM_2_SPI_CPOL
#define CONF_SERCOM_2_SPI_CPOL 0x0
#endif
// <o> Clock Phase
// <0x0=>Sample input on leading edge
// <0x1=>Sample input on trailing edge
// <i> Determines if input data is sampled on leading or trailing SCK edge. (CPHA)
// <id> spi_master_arch_cpha
#ifndef CONF_SERCOM_2_SPI_CPHA
#define CONF_SERCOM_2_SPI_CPHA 0x0
#endif
// <o> Immediate Buffer Overflow Notification
// <i> Controls when OVF is asserted (IBON)
// <0x0=>In data stream
// <0x1=>On buffer overflow
// <id> spi_master_arch_ibon
#ifndef CONF_SERCOM_2_SPI_IBON
#define CONF_SERCOM_2_SPI_IBON 0x0
#endif
// <q> Run in stand-by
// <i> Module stays active in stand-by sleep mode. (RUNSTDBY)
// <id> spi_master_arch_runstdby
#ifndef CONF_SERCOM_2_SPI_RUNSTDBY
#define CONF_SERCOM_2_SPI_RUNSTDBY 0x0
#endif
// <o> Debug Stop Mode
// <i> Behavior of the baud-rate generator when CPU is halted by external debugger. (DBGSTOP)
// <0=>Keep running
// <1=>Halt
// <id> spi_master_arch_dbgstop
#ifndef CONF_SERCOM_2_SPI_DBGSTOP
#define CONF_SERCOM_2_SPI_DBGSTOP 0
#endif
// </e>
// Address mode disabled in master mode
#ifndef CONF_SERCOM_2_SPI_AMODE_EN
#define CONF_SERCOM_2_SPI_AMODE_EN 0
#endif
#ifndef CONF_SERCOM_2_SPI_AMODE
#define CONF_SERCOM_2_SPI_AMODE 0
#endif
#ifndef CONF_SERCOM_2_SPI_ADDR
#define CONF_SERCOM_2_SPI_ADDR 0
#endif
#ifndef CONF_SERCOM_2_SPI_ADDRMASK
#define CONF_SERCOM_2_SPI_ADDRMASK 0
#endif
#ifndef CONF_SERCOM_2_SPI_SSDE
#define CONF_SERCOM_2_SPI_SSDE 0
#endif
#ifndef CONF_SERCOM_2_SPI_MSSEN
#define CONF_SERCOM_2_SPI_MSSEN 0x0
#endif
#ifndef CONF_SERCOM_2_SPI_PLOADEN
#define CONF_SERCOM_2_SPI_PLOADEN 0
#endif
// <o> Receive Data Pinout
// <0x0=>PAD[0]
// <0x1=>PAD[1]
// <0x2=>PAD[2]
// <0x3=>PAD[3]
// <id> spi_master_rxpo
#ifndef CONF_SERCOM_2_SPI_RXPO
#define CONF_SERCOM_2_SPI_RXPO 3
#endif
// <o> Transmit Data Pinout
// <0x0=>PAD[0,1]_DO_SCK
// <0x1=>PAD[2,3]_DO_SCK
// <0x2=>PAD[3,1]_DO_SCK
// <0x3=>PAD[0,3]_DO_SCK
// <id> spi_master_txpo
#ifndef CONF_SERCOM_2_SPI_TXPO
#define CONF_SERCOM_2_SPI_TXPO 0
#endif
// Calculate baud register value from requested baudrate value
#ifndef CONF_SERCOM_2_SPI_BAUD_RATE
#define CONF_SERCOM_2_SPI_BAUD_RATE ((float)CONF_GCLK_SERCOM2_CORE_FREQUENCY / (float)(2 * CONF_SERCOM_2_SPI_BAUD)) - 1
#endif
#include <peripheral_clk_config.h>
// Enable configuration of module
#ifndef CONF_SERCOM_5_SPI_ENABLE
#define CONF_SERCOM_5_SPI_ENABLE 1
#endif
// Set module in SPI Master mode
#ifndef CONF_SERCOM_5_SPI_MODE
#define CONF_SERCOM_5_SPI_MODE 0x03
#endif
// <h> Basic Configuration
// <q> Receive buffer enable
// <i> Enable receive buffer to receive data from slave (RXEN)
// <id> spi_master_rx_enable
#ifndef CONF_SERCOM_5_SPI_RXEN
#define CONF_SERCOM_5_SPI_RXEN 0x1
#endif
// <o> Character Size
// <i> Bit size for all characters sent over the SPI bus (CHSIZE)
// <0x0=>8 bits
// <0x1=>9 bits
// <id> spi_master_character_size
#ifndef CONF_SERCOM_5_SPI_CHSIZE
#define CONF_SERCOM_5_SPI_CHSIZE 0x0
#endif
// <o> Baud rate <1-18000000>
// <i> The SPI data transfer rate
// <id> spi_master_baud_rate
#ifndef CONF_SERCOM_5_SPI_BAUD
#define CONF_SERCOM_5_SPI_BAUD 50000
#endif
// </h>
// <e> Advanced Configuration
// <id> spi_master_advanced
#ifndef CONF_SERCOM_5_SPI_ADVANCED
#define CONF_SERCOM_5_SPI_ADVANCED 0
#endif
// <o> Dummy byte <0x00-0x1ff>
// <id> spi_master_dummybyte
// <i> Dummy byte used when reading data from the slave without sending any data
#ifndef CONF_SERCOM_5_SPI_DUMMYBYTE
#define CONF_SERCOM_5_SPI_DUMMYBYTE 0x1ff
#endif
// <o> Data Order
// <0=>MSB first
// <1=>LSB first
// <i> I least significant or most significant bit is shifted out first (DORD)
// <id> spi_master_arch_dord
#ifndef CONF_SERCOM_5_SPI_DORD
#define CONF_SERCOM_5_SPI_DORD 0x0
#endif
// <o> Clock Polarity
// <0=>SCK is low when idle
// <1=>SCK is high when idle
// <i> Determines if the leading edge is rising or falling with a corresponding opposite edge at the trailing edge. (CPOL)
// <id> spi_master_arch_cpol
#ifndef CONF_SERCOM_5_SPI_CPOL
#define CONF_SERCOM_5_SPI_CPOL 0x0
#endif
// <o> Clock Phase
// <0x0=>Sample input on leading edge
// <0x1=>Sample input on trailing edge
// <i> Determines if input data is sampled on leading or trailing SCK edge. (CPHA)
// <id> spi_master_arch_cpha
#ifndef CONF_SERCOM_5_SPI_CPHA
#define CONF_SERCOM_5_SPI_CPHA 0x0
#endif
// <o> Immediate Buffer Overflow Notification
// <i> Controls when OVF is asserted (IBON)
// <0x0=>In data stream
// <0x1=>On buffer overflow
// <id> spi_master_arch_ibon
#ifndef CONF_SERCOM_5_SPI_IBON
#define CONF_SERCOM_5_SPI_IBON 0x0
#endif
// <q> Run in stand-by
// <i> Module stays active in stand-by sleep mode. (RUNSTDBY)
// <id> spi_master_arch_runstdby
#ifndef CONF_SERCOM_5_SPI_RUNSTDBY
#define CONF_SERCOM_5_SPI_RUNSTDBY 0x0
#endif
// <o> Debug Stop Mode
// <i> Behavior of the baud-rate generator when CPU is halted by external debugger. (DBGSTOP)
// <0=>Keep running
// <1=>Halt
// <id> spi_master_arch_dbgstop
#ifndef CONF_SERCOM_5_SPI_DBGSTOP
#define CONF_SERCOM_5_SPI_DBGSTOP 0
#endif
// </e>
// Address mode disabled in master mode
#ifndef CONF_SERCOM_5_SPI_AMODE_EN
#define CONF_SERCOM_5_SPI_AMODE_EN 0
#endif
#ifndef CONF_SERCOM_5_SPI_AMODE
#define CONF_SERCOM_5_SPI_AMODE 0
#endif
#ifndef CONF_SERCOM_5_SPI_ADDR
#define CONF_SERCOM_5_SPI_ADDR 0
#endif
#ifndef CONF_SERCOM_5_SPI_ADDRMASK
#define CONF_SERCOM_5_SPI_ADDRMASK 0
#endif
#ifndef CONF_SERCOM_5_SPI_SSDE
#define CONF_SERCOM_5_SPI_SSDE 0
#endif
#ifndef CONF_SERCOM_5_SPI_MSSEN
#define CONF_SERCOM_5_SPI_MSSEN 0x0
#endif
#ifndef CONF_SERCOM_5_SPI_PLOADEN
#define CONF_SERCOM_5_SPI_PLOADEN 0
#endif
// <o> Receive Data Pinout
// <0x0=>PAD[0]
// <0x1=>PAD[1]
// <0x2=>PAD[2]
// <0x3=>PAD[3]
// <id> spi_master_rxpo
#ifndef CONF_SERCOM_5_SPI_RXPO
#define CONF_SERCOM_5_SPI_RXPO 3
#endif
// <o> Transmit Data Pinout
// <0x0=>PAD[0,1]_DO_SCK
// <0x1=>PAD[2,3]_DO_SCK
// <0x2=>PAD[3,1]_DO_SCK
// <0x3=>PAD[0,3]_DO_SCK
// <id> spi_master_txpo
#ifndef CONF_SERCOM_5_SPI_TXPO
#define CONF_SERCOM_5_SPI_TXPO 0
#endif
// Calculate baud register value from requested baudrate value
#ifndef CONF_SERCOM_5_SPI_BAUD_RATE
#define CONF_SERCOM_5_SPI_BAUD_RATE ((float)CONF_GCLK_SERCOM5_CORE_FREQUENCY / (float)(2 * CONF_SERCOM_5_SPI_BAUD)) - 1
#endif
// <<< end of configuration section >>>
#endif // HPL_SERCOM_CONFIG_H

View File

@ -0,0 +1,989 @@
/* Auto-generated config file peripheral_clk_config.h */
#ifndef PERIPHERAL_CLK_CONFIG_H
#define PERIPHERAL_CLK_CONFIG_H
// <<< Use Configuration Wizard in Context Menu >>>
// <y> ADC Clock Source
// <id> adc_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for ADC.
#ifndef CONF_GCLK_ADC0_SRC
#define CONF_GCLK_ADC0_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_ADC0_FREQUENCY
* \brief ADC0's Clock frequency
*/
#ifndef CONF_GCLK_ADC0_FREQUENCY
#define CONF_GCLK_ADC0_FREQUENCY 120000000
#endif
// <y> ADC Clock Source
// <id> adc_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for ADC.
#ifndef CONF_GCLK_ADC1_SRC
#define CONF_GCLK_ADC1_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_ADC1_FREQUENCY
* \brief ADC1's Clock frequency
*/
#ifndef CONF_GCLK_ADC1_FREQUENCY
#define CONF_GCLK_ADC1_FREQUENCY 120000000
#endif
// <y> CCL Clock Source
// <id> ccl_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for CCL.
#ifndef CONF_GCLK_CCL_SRC
#define CONF_GCLK_CCL_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_CCL_FREQUENCY
* \brief CCL's Clock frequency
*/
#ifndef CONF_GCLK_CCL_FREQUENCY
#define CONF_GCLK_CCL_FREQUENCY 120000000
#endif
// <y> EIC Clock Source
// <id> eic_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for EIC.
#ifndef CONF_GCLK_EIC_SRC
#define CONF_GCLK_EIC_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EIC_FREQUENCY
* \brief EIC's Clock frequency
*/
#ifndef CONF_GCLK_EIC_FREQUENCY
#define CONF_GCLK_EIC_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 0 Clock Source
// <id> evsys_clk_selection_0
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 0.
#ifndef CONF_GCLK_EVSYS_CHANNEL_0_SRC
#define CONF_GCLK_EVSYS_CHANNEL_0_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_0_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_0_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_0_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 1 Clock Source
// <id> evsys_clk_selection_1
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 1.
#ifndef CONF_GCLK_EVSYS_CHANNEL_1_SRC
#define CONF_GCLK_EVSYS_CHANNEL_1_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_1_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_1_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_1_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 2 Clock Source
// <id> evsys_clk_selection_2
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 2.
#ifndef CONF_GCLK_EVSYS_CHANNEL_2_SRC
#define CONF_GCLK_EVSYS_CHANNEL_2_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_2_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_2_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_2_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 3 Clock Source
// <id> evsys_clk_selection_3
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 3.
#ifndef CONF_GCLK_EVSYS_CHANNEL_3_SRC
#define CONF_GCLK_EVSYS_CHANNEL_3_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_3_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_3_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_3_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 4 Clock Source
// <id> evsys_clk_selection_4
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 4.
#ifndef CONF_GCLK_EVSYS_CHANNEL_4_SRC
#define CONF_GCLK_EVSYS_CHANNEL_4_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_4_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_4_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_4_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 5 Clock Source
// <id> evsys_clk_selection_5
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 5.
#ifndef CONF_GCLK_EVSYS_CHANNEL_5_SRC
#define CONF_GCLK_EVSYS_CHANNEL_5_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_5_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_5_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_5_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 6 Clock Source
// <id> evsys_clk_selection_6
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 6.
#ifndef CONF_GCLK_EVSYS_CHANNEL_6_SRC
#define CONF_GCLK_EVSYS_CHANNEL_6_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_6_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_6_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_6_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 7 Clock Source
// <id> evsys_clk_selection_7
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 7.
#ifndef CONF_GCLK_EVSYS_CHANNEL_7_SRC
#define CONF_GCLK_EVSYS_CHANNEL_7_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_7_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_7_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_7_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 8 Clock Source
// <id> evsys_clk_selection_8
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 8.
#ifndef CONF_GCLK_EVSYS_CHANNEL_8_SRC
#define CONF_GCLK_EVSYS_CHANNEL_8_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_8_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_8_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_8_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 9 Clock Source
// <id> evsys_clk_selection_9
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 9.
#ifndef CONF_GCLK_EVSYS_CHANNEL_9_SRC
#define CONF_GCLK_EVSYS_CHANNEL_9_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_9_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_9_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_9_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 10 Clock Source
// <id> evsys_clk_selection_10
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 10.
#ifndef CONF_GCLK_EVSYS_CHANNEL_10_SRC
#define CONF_GCLK_EVSYS_CHANNEL_10_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_10_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_10_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_10_FREQUENCY 120000000
#endif
// <y> EVSYS Channel 11 Clock Source
// <id> evsys_clk_selection_11
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for channel 11.
#ifndef CONF_GCLK_EVSYS_CHANNEL_11_SRC
#define CONF_GCLK_EVSYS_CHANNEL_11_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_EVSYS_CHANNEL_11_FREQUENCY
* \brief EVSYS's Clock frequency
*/
#ifndef CONF_GCLK_EVSYS_CHANNEL_11_FREQUENCY
#define CONF_GCLK_EVSYS_CHANNEL_11_FREQUENCY 120000000
#endif
/**
* \def CONF_CPU_FREQUENCY
* \brief CPU's Clock frequency
*/
#ifndef CONF_CPU_FREQUENCY
#define CONF_CPU_FREQUENCY 120000000
#endif
// <y> Core Clock Source
// <id> core_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for CORE.
#ifndef CONF_GCLK_SERCOM1_CORE_SRC
#define CONF_GCLK_SERCOM1_CORE_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
// <y> Slow Clock Source
// <id> slow_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the slow clock source.
#ifndef CONF_GCLK_SERCOM1_SLOW_SRC
#define CONF_GCLK_SERCOM1_SLOW_SRC GCLK_PCHCTRL_GEN_GCLK3_Val
#endif
/**
* \def CONF_GCLK_SERCOM1_CORE_FREQUENCY
* \brief SERCOM1's Core Clock frequency
*/
#ifndef CONF_GCLK_SERCOM1_CORE_FREQUENCY
#define CONF_GCLK_SERCOM1_CORE_FREQUENCY 120000000
#endif
/**
* \def CONF_GCLK_SERCOM1_SLOW_FREQUENCY
* \brief SERCOM1's Slow Clock frequency
*/
#ifndef CONF_GCLK_SERCOM1_SLOW_FREQUENCY
#define CONF_GCLK_SERCOM1_SLOW_FREQUENCY 32768
#endif
// <y> Core Clock Source
// <id> core_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for CORE.
#ifndef CONF_GCLK_SERCOM2_CORE_SRC
#define CONF_GCLK_SERCOM2_CORE_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
// <y> Slow Clock Source
// <id> slow_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the slow clock source.
#ifndef CONF_GCLK_SERCOM2_SLOW_SRC
#define CONF_GCLK_SERCOM2_SLOW_SRC GCLK_PCHCTRL_GEN_GCLK3_Val
#endif
/**
* \def CONF_GCLK_SERCOM2_CORE_FREQUENCY
* \brief SERCOM2's Core Clock frequency
*/
#ifndef CONF_GCLK_SERCOM2_CORE_FREQUENCY
#define CONF_GCLK_SERCOM2_CORE_FREQUENCY 120000000
#endif
/**
* \def CONF_GCLK_SERCOM2_SLOW_FREQUENCY
* \brief SERCOM2's Slow Clock frequency
*/
#ifndef CONF_GCLK_SERCOM2_SLOW_FREQUENCY
#define CONF_GCLK_SERCOM2_SLOW_FREQUENCY 32768
#endif
// <y> Core Clock Source
// <id> core_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for CORE.
#ifndef CONF_GCLK_SERCOM5_CORE_SRC
#define CONF_GCLK_SERCOM5_CORE_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
// <y> Slow Clock Source
// <id> slow_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the slow clock source.
#ifndef CONF_GCLK_SERCOM5_SLOW_SRC
#define CONF_GCLK_SERCOM5_SLOW_SRC GCLK_PCHCTRL_GEN_GCLK3_Val
#endif
/**
* \def CONF_GCLK_SERCOM5_CORE_FREQUENCY
* \brief SERCOM5's Core Clock frequency
*/
#ifndef CONF_GCLK_SERCOM5_CORE_FREQUENCY
#define CONF_GCLK_SERCOM5_CORE_FREQUENCY 120000000
#endif
/**
* \def CONF_GCLK_SERCOM5_SLOW_FREQUENCY
* \brief SERCOM5's Slow Clock frequency
*/
#ifndef CONF_GCLK_SERCOM5_SLOW_FREQUENCY
#define CONF_GCLK_SERCOM5_SLOW_FREQUENCY 32768
#endif
// <y> TCC Clock Source
// <id> tcc_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for TCC.
#ifndef CONF_GCLK_TCC0_SRC
#define CONF_GCLK_TCC0_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_TCC0_FREQUENCY
* \brief TCC0's Clock frequency
*/
#ifndef CONF_GCLK_TCC0_FREQUENCY
#define CONF_GCLK_TCC0_FREQUENCY 120000000
#endif
// <y> TCC Clock Source
// <id> tcc_gclk_selection
// <GCLK_PCHCTRL_GEN_GCLK0_Val"> Generic clock generator 0
// <GCLK_PCHCTRL_GEN_GCLK1_Val"> Generic clock generator 1
// <GCLK_PCHCTRL_GEN_GCLK2_Val"> Generic clock generator 2
// <GCLK_PCHCTRL_GEN_GCLK3_Val"> Generic clock generator 3
// <GCLK_PCHCTRL_GEN_GCLK4_Val"> Generic clock generator 4
// <GCLK_PCHCTRL_GEN_GCLK5_Val"> Generic clock generator 5
// <GCLK_PCHCTRL_GEN_GCLK6_Val"> Generic clock generator 6
// <GCLK_PCHCTRL_GEN_GCLK7_Val"> Generic clock generator 7
// <GCLK_PCHCTRL_GEN_GCLK8_Val"> Generic clock generator 8
// <GCLK_PCHCTRL_GEN_GCLK9_Val"> Generic clock generator 9
// <GCLK_PCHCTRL_GEN_GCLK10_Val"> Generic clock generator 10
// <GCLK_PCHCTRL_GEN_GCLK11_Val"> Generic clock generator 11
// <i> Select the clock source for TCC.
#ifndef CONF_GCLK_TCC1_SRC
#define CONF_GCLK_TCC1_SRC GCLK_PCHCTRL_GEN_GCLK0_Val
#endif
/**
* \def CONF_GCLK_TCC1_FREQUENCY
* \brief TCC1's Clock frequency
*/
#ifndef CONF_GCLK_TCC1_FREQUENCY
#define CONF_GCLK_TCC1_FREQUENCY 120000000
#endif
// <<< end of configuration section >>>
#endif // PERIPHERAL_CLK_CONFIG_H

View File

@ -0,0 +1,475 @@
<?xml version="1.0" encoding="utf-8"?>
<Configurations xmlns:i="http://www.w3.org/2001/XMLSchema-instance" z:Id="i1" xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/" xmlns="DefaultValues">
<Configurations>
<Configuration z:Id="i2">
<Compiler_dictionary xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:KeyValueOfstringstring>
<d4p1:Key>DebugLevel</d4p1:Key>
<d4p1:Value>None</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>IncludePaths</d4p1:Key>
<d4p1:Value>NDEBUG</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>MiscellaneousSettings</d4p1:Key>
<d4p1:Value>-std=gnu99</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>OptimizationLevel</d4p1:Key>
<d4p1:Value>Optimize for size (-Os)</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>SymbolDefines</d4p1:Key>
<d4p1:Value>NDEBUG</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>SymbolUndefines</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>Verbose</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>WarningsAsErrors</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.general.CLanguageExp</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.general.ChangeDefaultCharTypeUnsigned</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.general.ChangeDefaultBitFieldUnsigned</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.general.processormode</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.preprocessor.DoNotSearchSystemDirectories</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.preprocessor.PreprocessOnly</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.symbols.Default</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.directories.DefaultIncludePath</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.OtherFlags</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.PrepareFunctionsForGarbageCollection</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.PrepareDataForGarbageCollection</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.EnableUnsafeMatchOptimizations</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.EnableFastMath</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.GeneratePositionIndependentCode</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.EnableLongCalls</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.OtherDebuggingFlags</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.GenerateGprofInformation</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.GenerateProfInformation</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.AllWarnings</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.ExtraWarnings</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.Undefined</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.CheckSyntaxOnly</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.Pedantic</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.PedanticWarningsAsErrors</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.InhibitAllWarnings</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.miscellaneous.Device</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.miscellaneous.CompileOnly</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.miscellaneous.SupportAnsiPrograms</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.miscellaneous.MakeFileDependent</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
</Compiler_dictionary>
<Linker_dictionary xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:KeyValueOfstringstring>
<d4p1:Key>Libraries</d4p1:Key>
<d4p1:Value>libm</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>LibrarySearchPath</d4p1:Key>
<d4p1:Value>$(ProjectDir)\Device_Startup</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>MiscellaneousSettings</d4p1:Key>
<d4p1:Value>-Tsame51j19a_flash.ld</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.DoNotUseStandardStartFiles</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.DoNotUseDefaultLibraries</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.NoStartupOrDefaultLibs</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.OmitAllSymbolInformation</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.NoSharedLibraries</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.GenerateMAPFile</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.UseNewlibNano</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.AdditionalSpecs</d4p1:Key>
<d4p1:Value>None</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.optimization.GarbageCollectUnusedSections</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.optimization.EnableUnsafeMatchOptimizations</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.optimization.EnableFastMath</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.optimization.GeneratePositionIndependentCode</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.memorysettings.Flash</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.memorysettings.Sram</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.memorysettings.ExternalRAM</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.miscellaneous.OtherOptions</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.miscellaneous.OtherObjects</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
</Linker_dictionary>
<Name>Release</Name>
</Configuration>
<Configuration z:Id="i3">
<Compiler_dictionary xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:KeyValueOfstringstring>
<d4p1:Key>DebugLevel</d4p1:Key>
<d4p1:Value>Maximum (-g3)</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>IncludePaths</d4p1:Key>
<d4p1:Value>DEBUG</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>MiscellaneousSettings</d4p1:Key>
<d4p1:Value>-std=gnu99</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>OptimizationLevel</d4p1:Key>
<d4p1:Value>Optimize debugging experience (-Og)</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>SymbolDefines</d4p1:Key>
<d4p1:Value>DEBUG</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>SymbolUndefines</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>Verbose</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>WarningsAsErrors</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.general.CLanguageExp</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.general.ChangeDefaultCharTypeUnsigned</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.general.ChangeDefaultBitFieldUnsigned</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.general.processormode</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.preprocessor.DoNotSearchSystemDirectories</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.preprocessor.PreprocessOnly</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.symbols.Default</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.directories.DefaultIncludePath</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.OtherFlags</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.PrepareFunctionsForGarbageCollection</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.PrepareDataForGarbageCollection</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.EnableUnsafeMatchOptimizations</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.EnableFastMath</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.GeneratePositionIndependentCode</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.EnableLongCalls</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.OtherDebuggingFlags</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.GenerateGprofInformation</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.optimization.GenerateProfInformation</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.AllWarnings</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.ExtraWarnings</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.Undefined</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.CheckSyntaxOnly</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.Pedantic</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.PedanticWarningsAsErrors</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.warnings.InhibitAllWarnings</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.miscellaneous.Device</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.miscellaneous.CompileOnly</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.miscellaneous.SupportAnsiPrograms</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.compiler.miscellaneous.MakeFileDependent</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
</Compiler_dictionary>
<Linker_dictionary xmlns:d4p1="http://schemas.microsoft.com/2003/10/Serialization/Arrays">
<d4p1:KeyValueOfstringstring>
<d4p1:Key>Libraries</d4p1:Key>
<d4p1:Value>libm</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>LibrarySearchPath</d4p1:Key>
<d4p1:Value>$(ProjectDir)\Device_Startup</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>MiscellaneousSettings</d4p1:Key>
<d4p1:Value>-Tsame51j19a_flash.ld</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.DoNotUseStandardStartFiles</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.DoNotUseDefaultLibraries</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.NoStartupOrDefaultLibs</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.OmitAllSymbolInformation</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.NoSharedLibraries</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.GenerateMAPFile</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.UseNewlibNano</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.general.AdditionalSpecs</d4p1:Key>
<d4p1:Value>None</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.optimization.GarbageCollectUnusedSections</d4p1:Key>
<d4p1:Value>True</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.optimization.EnableUnsafeMatchOptimizations</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.optimization.EnableFastMath</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.optimization.GeneratePositionIndependentCode</d4p1:Key>
<d4p1:Value>False</d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.memorysettings.Flash</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.memorysettings.Sram</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.memorysettings.ExternalRAM</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.miscellaneous.OtherOptions</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
<d4p1:KeyValueOfstringstring>
<d4p1:Key>armgcc.linker.miscellaneous.OtherObjects</d4p1:Key>
<d4p1:Value></d4p1:Value>
</d4p1:KeyValueOfstringstring>
</Linker_dictionary>
<Name>Debug</Name>
</Configuration>
</Configurations>
</Configurations>

View File

@ -0,0 +1,163 @@
/**
* \file
*
* \brief Linker script for running in internal FLASH on the SAME51J19A
*
* Copyright (c) 2019 Microchip Technology Inc.
*
* \asf_license_start
*
* \page License
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the Licence at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* \asf_license_stop
*
*/
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
SEARCH_DIR(.)
/* Memory Spaces Definitions */
MEMORY
{
rom (rx) : ORIGIN = 0x00000000, LENGTH = 0x00080000
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 0x00030000
bkupram (rwx) : ORIGIN = 0x47000000, LENGTH = 0x00002000
qspi (rwx) : ORIGIN = 0x04000000, LENGTH = 0x01000000
}
/* The stack size used by the application. NOTE: you need to adjust according to your application. */
STACK_SIZE = DEFINED(STACK_SIZE) ? STACK_SIZE : DEFINED(__stack_size__) ? __stack_size__ : 0xC000;
/* Section Definitions */
SECTIONS
{
.text :
{
. = ALIGN(4);
_sfixed = .;
KEEP(*(.vectors .vectors.*))
*(.text .text.* .gnu.linkonce.t.*)
*(.glue_7t) *(.glue_7)
*(.rodata .rodata* .gnu.linkonce.r.*)
*(.ARM.extab* .gnu.linkonce.armextab.*)
/* Support C constructors, and C destructors in both user code
and the C library. This also provides support for C++ code. */
. = ALIGN(4);
KEEP(*(.init))
. = ALIGN(4);
__preinit_array_start = .;
KEEP (*(.preinit_array))
__preinit_array_end = .;
. = ALIGN(4);
__init_array_start = .;
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
__init_array_end = .;
. = ALIGN(4);
KEEP (*crtbegin.o(.ctors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*crtend.o(.ctors))
. = ALIGN(4);
KEEP(*(.fini))
. = ALIGN(4);
__fini_array_start = .;
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
__fini_array_end = .;
KEEP (*crtbegin.o(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*crtend.o(.dtors))
. = ALIGN(4);
_efixed = .; /* End of text section */
} > rom
/* .ARM.exidx is sorted, so has to go in its own output section. */
PROVIDE_HIDDEN (__exidx_start = .);
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > rom
PROVIDE_HIDDEN (__exidx_end = .);
. = ALIGN(4);
_etext = .;
.relocate : AT (_etext)
{
. = ALIGN(4);
_srelocate = .;
*(.ramfunc .ramfunc.*);
*(.data .data.*);
. = ALIGN(4);
_erelocate = .;
} > ram
.bkupram (NOLOAD):
{
. = ALIGN(8);
_sbkupram = .;
*(.bkupram .bkupram.*);
. = ALIGN(8);
_ebkupram = .;
} > bkupram
.qspi (NOLOAD):
{
. = ALIGN(8);
_sqspi = .;
*(.qspi .qspi.*);
. = ALIGN(8);
_eqspi = .;
} > qspi
/* .bss section which is used for uninitialized data */
.bss (NOLOAD) :
{
. = ALIGN(4);
_sbss = . ;
_szero = .;
*(.bss .bss.*)
*(COMMON)
. = ALIGN(4);
_ebss = . ;
_ezero = .;
} > ram
/* stack section */
.stack (NOLOAD):
{
. = ALIGN(8);
_sstack = .;
. = . + STACK_SIZE;
. = ALIGN(8);
_estack = .;
} > ram
. = ALIGN(4);
_end = . ;
}

View File

@ -0,0 +1,162 @@
/**
* \file
*
* \brief Linker script for running in internal SRAM on the SAME51J19A
*
* Copyright (c) 2019 Microchip Technology Inc.
*
* \asf_license_start
*
* \page License
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the Licence at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* \asf_license_stop
*
*/
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
SEARCH_DIR(.)
/* Memory Spaces Definitions */
MEMORY
{
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 0x00030000
bkupram (rwx) : ORIGIN = 0x47000000, LENGTH = 0x00002000
qspi (rwx) : ORIGIN = 0x04000000, LENGTH = 0x01000000
}
/* The stack size used by the application. NOTE: you need to adjust according to your application. */
STACK_SIZE = DEFINED(STACK_SIZE) ? STACK_SIZE : DEFINED(__stack_size__) ? __stack_size__ : 0xC000;
/* Section Definitions */
SECTIONS
{
.text :
{
. = ALIGN(4);
_sfixed = .;
KEEP(*(.vectors .vectors.*))
*(.text .text.* .gnu.linkonce.t.*)
*(.glue_7t) *(.glue_7)
*(.rodata .rodata* .gnu.linkonce.r.*)
*(.ARM.extab* .gnu.linkonce.armextab.*)
/* Support C constructors, and C destructors in both user code
and the C library. This also provides support for C++ code. */
. = ALIGN(4);
KEEP(*(.init))
. = ALIGN(4);
__preinit_array_start = .;
KEEP (*(.preinit_array))
__preinit_array_end = .;
. = ALIGN(4);
__init_array_start = .;
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
__init_array_end = .;
. = ALIGN(4);
KEEP (*crtbegin.o(.ctors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*crtend.o(.ctors))
. = ALIGN(4);
KEEP(*(.fini))
. = ALIGN(4);
__fini_array_start = .;
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
__fini_array_end = .;
KEEP (*crtbegin.o(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*crtend.o(.dtors))
. = ALIGN(4);
_efixed = .; /* End of text section */
} > ram
/* .ARM.exidx is sorted, so has to go in its own output section. */
PROVIDE_HIDDEN (__exidx_start = .);
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > ram
PROVIDE_HIDDEN (__exidx_end = .);
. = ALIGN(4);
_etext = .;
.relocate : AT (_etext)
{
. = ALIGN(4);
_srelocate = .;
*(.ramfunc .ramfunc.*);
*(.data .data.*);
. = ALIGN(4);
_erelocate = .;
} > ram
.bkupram (NOLOAD):
{
. = ALIGN(8);
_sbkupram = .;
*(.bkupram .bkupram.*);
. = ALIGN(8);
_ebkupram = .;
} > bkupram
.qspi (NOLOAD):
{
. = ALIGN(8);
_sqspi = .;
*(.qspi .qspi.*);
. = ALIGN(8);
_eqspi = .;
} > qspi
/* .bss section which is used for uninitialized data */
.bss (NOLOAD) :
{
. = ALIGN(4);
_sbss = . ;
_szero = .;
*(.bss .bss.*)
*(COMMON)
. = ALIGN(4);
_ebss = . ;
_ezero = .;
} > ram
/* stack section */
.stack (NOLOAD):
{
. = ALIGN(8);
_sstack = .;
. = . + STACK_SIZE;
. = ALIGN(8);
_estack = .;
} > ram
. = ALIGN(4);
_end = . ;
}

View File

@ -0,0 +1,546 @@
/**
* \file
*
* \brief gcc starttup file for SAME51
*
* Copyright (c) 2019 Microchip Technology Inc.
*
* \asf_license_start
*
* \page License
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the Licence at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* \asf_license_stop
*
*/
#include "same51.h"
/* Initialize segments */
extern uint32_t _sfixed;
extern uint32_t _efixed;
extern uint32_t _etext;
extern uint32_t _srelocate;
extern uint32_t _erelocate;
extern uint32_t _szero;
extern uint32_t _ezero;
extern uint32_t _sstack;
extern uint32_t _estack;
/** \cond DOXYGEN_SHOULD_SKIP_THIS */
int main(void);
/** \endcond */
void __libc_init_array(void);
/* Default empty handler */
void Dummy_Handler(void);
/* Cortex-M4 core handlers */
void NonMaskableInt_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void HardFault_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void MemManagement_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void BusFault_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void UsageFault_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void SVCall_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void DebugMonitor_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void PendSV_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void SysTick_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
/* Peripherals handlers */
void PM_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void MCLK_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void OSCCTRL_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* OSCCTRL_XOSCFAIL_0, OSCCTRL_XOSCRDY_0 */
void OSCCTRL_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* OSCCTRL_XOSCFAIL_1, OSCCTRL_XOSCRDY_1 */
void OSCCTRL_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* OSCCTRL_DFLLLOCKC, OSCCTRL_DFLLLOCKF, OSCCTRL_DFLLOOB, OSCCTRL_DFLLRCS, OSCCTRL_DFLLRDY */
void OSCCTRL_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* OSCCTRL_DPLLLCKF_0, OSCCTRL_DPLLLCKR_0, OSCCTRL_DPLLLDRTO_0, OSCCTRL_DPLLLTO_0 */
void OSCCTRL_4_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* OSCCTRL_DPLLLCKF_1, OSCCTRL_DPLLLCKR_1, OSCCTRL_DPLLLDRTO_1, OSCCTRL_DPLLLTO_1 */
void OSC32KCTRL_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void SUPC_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SUPC_B12SRDY, SUPC_B33SRDY, SUPC_BOD12RDY, SUPC_BOD33RDY, SUPC_VCORERDY, SUPC_VREGRDY */
void SUPC_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SUPC_BOD12DET, SUPC_BOD33DET */
void WDT_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void RTC_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void EIC_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_0 */
void EIC_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_1 */
void EIC_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_2 */
void EIC_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_3 */
void EIC_4_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_4 */
void EIC_5_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_5 */
void EIC_6_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_6 */
void EIC_7_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_7 */
void EIC_8_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_8 */
void EIC_9_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_9 */
void EIC_10_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_10 */
void EIC_11_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_11 */
void EIC_12_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_12 */
void EIC_13_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_13 */
void EIC_14_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_14 */
void EIC_15_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EIC_EXTINT_15 */
void FREQM_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void NVMCTRL_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* NVMCTRL_0, NVMCTRL_1, NVMCTRL_2, NVMCTRL_3, NVMCTRL_4, NVMCTRL_5, NVMCTRL_6, NVMCTRL_7 */
void NVMCTRL_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* NVMCTRL_10, NVMCTRL_8, NVMCTRL_9 */
void DMAC_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DMAC_SUSP_0, DMAC_TCMPL_0, DMAC_TERR_0 */
void DMAC_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DMAC_SUSP_1, DMAC_TCMPL_1, DMAC_TERR_1 */
void DMAC_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DMAC_SUSP_2, DMAC_TCMPL_2, DMAC_TERR_2 */
void DMAC_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DMAC_SUSP_3, DMAC_TCMPL_3, DMAC_TERR_3 */
void DMAC_4_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DMAC_SUSP_10, DMAC_SUSP_11, DMAC_SUSP_12, DMAC_SUSP_13, DMAC_SUSP_14, DMAC_SUSP_15, DMAC_SUSP_16, DMAC_SUSP_17, DMAC_SUSP_18, DMAC_SUSP_19, DMAC_SUSP_20, DMAC_SUSP_21, DMAC_SUSP_22, DMAC_SUSP_23, DMAC_SUSP_24, DMAC_SUSP_25, DMAC_SUSP_26, DMAC_SUSP_27, DMAC_SUSP_28, DMAC_SUSP_29, DMAC_SUSP_30, DMAC_SUSP_31, DMAC_SUSP_4, DMAC_SUSP_5, DMAC_SUSP_6, DMAC_SUSP_7, DMAC_SUSP_8, DMAC_SUSP_9, DMAC_TCMPL_10, DMAC_TCMPL_11, DMAC_TCMPL_12, DMAC_TCMPL_13, DMAC_TCMPL_14, DMAC_TCMPL_15, DMAC_TCMPL_16, DMAC_TCMPL_17, DMAC_TCMPL_18, DMAC_TCMPL_19, DMAC_TCMPL_20, DMAC_TCMPL_21, DMAC_TCMPL_22, DMAC_TCMPL_23, DMAC_TCMPL_24, DMAC_TCMPL_25, DMAC_TCMPL_26, DMAC_TCMPL_27, DMAC_TCMPL_28, DMAC_TCMPL_29, DMAC_TCMPL_30, DMAC_TCMPL_31, DMAC_TCMPL_4, DMAC_TCMPL_5, DMAC_TCMPL_6, DMAC_TCMPL_7, DMAC_TCMPL_8, DMAC_TCMPL_9, DMAC_TERR_10, DMAC_TERR_11, DMAC_TERR_12, DMAC_TERR_13, DMAC_TERR_14, DMAC_TERR_15, DMAC_TERR_16, DMAC_TERR_17, DMAC_TERR_18, DMAC_TERR_19, DMAC_TERR_20, DMAC_TERR_21, DMAC_TERR_22, DMAC_TERR_23, DMAC_TERR_24, DMAC_TERR_25, DMAC_TERR_26, DMAC_TERR_27, DMAC_TERR_28, DMAC_TERR_29, DMAC_TERR_30, DMAC_TERR_31, DMAC_TERR_4, DMAC_TERR_5, DMAC_TERR_6, DMAC_TERR_7, DMAC_TERR_8, DMAC_TERR_9 */
void EVSYS_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EVSYS_EVD_0, EVSYS_OVR_0 */
void EVSYS_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EVSYS_EVD_1, EVSYS_OVR_1 */
void EVSYS_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EVSYS_EVD_2, EVSYS_OVR_2 */
void EVSYS_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EVSYS_EVD_3, EVSYS_OVR_3 */
void EVSYS_4_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* EVSYS_EVD_10, EVSYS_EVD_11, EVSYS_EVD_4, EVSYS_EVD_5, EVSYS_EVD_6, EVSYS_EVD_7, EVSYS_EVD_8, EVSYS_EVD_9, EVSYS_OVR_10, EVSYS_OVR_11, EVSYS_OVR_4, EVSYS_OVR_5, EVSYS_OVR_6, EVSYS_OVR_7, EVSYS_OVR_8, EVSYS_OVR_9 */
void PAC_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void RAMECC_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void SERCOM0_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM0_0 */
void SERCOM0_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM0_1 */
void SERCOM0_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM0_2 */
void SERCOM0_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM0_3, SERCOM0_4, SERCOM0_5, SERCOM0_6 */
void SERCOM1_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM1_0 */
void SERCOM1_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM1_1 */
void SERCOM1_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM1_2 */
void SERCOM1_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM1_3, SERCOM1_4, SERCOM1_5, SERCOM1_6 */
void SERCOM2_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM2_0 */
void SERCOM2_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM2_1 */
void SERCOM2_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM2_2 */
void SERCOM2_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM2_3, SERCOM2_4, SERCOM2_5, SERCOM2_6 */
void SERCOM3_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM3_0 */
void SERCOM3_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM3_1 */
void SERCOM3_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM3_2 */
void SERCOM3_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM3_3, SERCOM3_4, SERCOM3_5, SERCOM3_6 */
#ifdef ID_SERCOM4
void SERCOM4_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM4_0 */
void SERCOM4_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM4_1 */
void SERCOM4_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM4_2 */
void SERCOM4_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM4_3, SERCOM4_4, SERCOM4_5, SERCOM4_6 */
#endif
#ifdef ID_SERCOM5
void SERCOM5_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM5_0 */
void SERCOM5_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM5_1 */
void SERCOM5_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM5_2 */
void SERCOM5_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM5_3, SERCOM5_4, SERCOM5_5, SERCOM5_6 */
#endif
#ifdef ID_SERCOM6
void SERCOM6_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM6_0 */
void SERCOM6_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM6_1 */
void SERCOM6_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM6_2 */
void SERCOM6_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM6_3, SERCOM6_4, SERCOM6_5, SERCOM6_6 */
#endif
#ifdef ID_SERCOM7
void SERCOM7_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM7_0 */
void SERCOM7_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM7_1 */
void SERCOM7_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM7_2 */
void SERCOM7_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* SERCOM7_3, SERCOM7_4, SERCOM7_5, SERCOM7_6 */
#endif
#ifdef ID_CAN0
void CAN0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
#ifdef ID_CAN1
void CAN1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
#ifdef ID_USB
void USB_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* USB_EORSM_DNRSM, USB_EORST_RST, USB_LPMSUSP_DDISC, USB_LPM_DCONN, USB_MSOF, USB_RAMACER, USB_RXSTP_TXSTP_0, USB_RXSTP_TXSTP_1, USB_RXSTP_TXSTP_2, USB_RXSTP_TXSTP_3, USB_RXSTP_TXSTP_4, USB_RXSTP_TXSTP_5, USB_RXSTP_TXSTP_6, USB_RXSTP_TXSTP_7, USB_STALL0_STALL_0, USB_STALL0_STALL_1, USB_STALL0_STALL_2, USB_STALL0_STALL_3, USB_STALL0_STALL_4, USB_STALL0_STALL_5, USB_STALL0_STALL_6, USB_STALL0_STALL_7, USB_STALL1_0, USB_STALL1_1, USB_STALL1_2, USB_STALL1_3, USB_STALL1_4, USB_STALL1_5, USB_STALL1_6, USB_STALL1_7, USB_SUSPEND, USB_TRFAIL0_TRFAIL_0, USB_TRFAIL0_TRFAIL_1, USB_TRFAIL0_TRFAIL_2, USB_TRFAIL0_TRFAIL_3, USB_TRFAIL0_TRFAIL_4, USB_TRFAIL0_TRFAIL_5, USB_TRFAIL0_TRFAIL_6, USB_TRFAIL0_TRFAIL_7, USB_TRFAIL1_PERR_0, USB_TRFAIL1_PERR_1, USB_TRFAIL1_PERR_2, USB_TRFAIL1_PERR_3, USB_TRFAIL1_PERR_4, USB_TRFAIL1_PERR_5, USB_TRFAIL1_PERR_6, USB_TRFAIL1_PERR_7, USB_UPRSM, USB_WAKEUP */
void USB_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* USB_SOF_HSOF */
void USB_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* USB_TRCPT0_0, USB_TRCPT0_1, USB_TRCPT0_2, USB_TRCPT0_3, USB_TRCPT0_4, USB_TRCPT0_5, USB_TRCPT0_6, USB_TRCPT0_7 */
void USB_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* USB_TRCPT1_0, USB_TRCPT1_1, USB_TRCPT1_2, USB_TRCPT1_3, USB_TRCPT1_4, USB_TRCPT1_5, USB_TRCPT1_6, USB_TRCPT1_7 */
#endif
#ifdef ID_GMAC
void GMAC_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
void TCC0_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC0_CNT_A, TCC0_DFS_A, TCC0_ERR_A, TCC0_FAULT0_A, TCC0_FAULT1_A, TCC0_FAULTA_A, TCC0_FAULTB_A, TCC0_OVF, TCC0_TRG, TCC0_UFS_A */
void TCC0_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC0_MC_0 */
void TCC0_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC0_MC_1 */
void TCC0_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC0_MC_2 */
void TCC0_4_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC0_MC_3 */
void TCC0_5_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC0_MC_4 */
void TCC0_6_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC0_MC_5 */
void TCC1_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC1_CNT_A, TCC1_DFS_A, TCC1_ERR_A, TCC1_FAULT0_A, TCC1_FAULT1_A, TCC1_FAULTA_A, TCC1_FAULTB_A, TCC1_OVF, TCC1_TRG, TCC1_UFS_A */
void TCC1_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC1_MC_0 */
void TCC1_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC1_MC_1 */
void TCC1_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC1_MC_2 */
void TCC1_4_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC1_MC_3 */
void TCC2_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC2_CNT_A, TCC2_DFS_A, TCC2_ERR_A, TCC2_FAULT0_A, TCC2_FAULT1_A, TCC2_FAULTA_A, TCC2_FAULTB_A, TCC2_OVF, TCC2_TRG, TCC2_UFS_A */
void TCC2_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC2_MC_0 */
void TCC2_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC2_MC_1 */
void TCC2_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC2_MC_2 */
#ifdef ID_TCC3
void TCC3_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC3_CNT_A, TCC3_DFS_A, TCC3_ERR_A, TCC3_FAULT0_A, TCC3_FAULT1_A, TCC3_FAULTA_A, TCC3_FAULTB_A, TCC3_OVF, TCC3_TRG, TCC3_UFS_A */
void TCC3_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC3_MC_0 */
void TCC3_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC3_MC_1 */
#endif
#ifdef ID_TCC4
void TCC4_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC4_CNT_A, TCC4_DFS_A, TCC4_ERR_A, TCC4_FAULT0_A, TCC4_FAULT1_A, TCC4_FAULTA_A, TCC4_FAULTB_A, TCC4_OVF, TCC4_TRG, TCC4_UFS_A */
void TCC4_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC4_MC_0 */
void TCC4_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* TCC4_MC_1 */
#endif
void TC0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void TC1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void TC2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void TC3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#ifdef ID_TC4
void TC4_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
#ifdef ID_TC5
void TC5_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
#ifdef ID_TC6
void TC6_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
#ifdef ID_TC7
void TC7_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
void PDEC_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* PDEC_DIR_A, PDEC_ERR_A, PDEC_OVF, PDEC_VLC_A */
void PDEC_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* PDEC_MC_0 */
void PDEC_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* PDEC_MC_1 */
void ADC0_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* ADC0_OVERRUN, ADC0_WINMON */
void ADC0_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* ADC0_RESRDY */
void ADC1_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* ADC1_OVERRUN, ADC1_WINMON */
void ADC1_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* ADC1_RESRDY */
void AC_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void DAC_0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DAC_OVERRUN_A_0, DAC_OVERRUN_A_1, DAC_UNDERRUN_A_0, DAC_UNDERRUN_A_1 */
void DAC_1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DAC_EMPTY_0 */
void DAC_2_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DAC_EMPTY_1 */
void DAC_3_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DAC_RESRDY_0 */
void DAC_4_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler"))); /* DAC_RESRDY_1 */
#ifdef ID_I2S
void I2S_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
void PCC_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void AES_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
void TRNG_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#ifdef ID_ICM
void ICM_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
#ifdef ID_PUKCC
void PUKCC_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
void QSPI_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#ifdef ID_SDHC0
void SDHC0_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
#ifdef ID_SDHC1
void SDHC1_Handler ( void ) __attribute__ ((weak, alias("Dummy_Handler")));
#endif
/* Exception Table */
__attribute__ ((section(".vectors")))
const DeviceVectors exception_table = {
/* Configure Initial Stack Pointer, using linker-generated symbols */
.pvStack = (void*) (&_estack),
.pfnReset_Handler = (void*) Reset_Handler,
.pfnNonMaskableInt_Handler = (void*) NonMaskableInt_Handler,
.pfnHardFault_Handler = (void*) HardFault_Handler,
.pfnMemManagement_Handler = (void*) MemManagement_Handler,
.pfnBusFault_Handler = (void*) BusFault_Handler,
.pfnUsageFault_Handler = (void*) UsageFault_Handler,
.pvReservedM9 = (void*) (0UL), /* Reserved */
.pvReservedM8 = (void*) (0UL), /* Reserved */
.pvReservedM7 = (void*) (0UL), /* Reserved */
.pvReservedM6 = (void*) (0UL), /* Reserved */
.pfnSVCall_Handler = (void*) SVCall_Handler,
.pfnDebugMonitor_Handler = (void*) DebugMonitor_Handler,
.pvReservedM3 = (void*) (0UL), /* Reserved */
.pfnPendSV_Handler = (void*) PendSV_Handler,
.pfnSysTick_Handler = (void*) SysTick_Handler,
/* Configurable interrupts */
.pfnPM_Handler = (void*) PM_Handler, /* 0 Power Manager */
.pfnMCLK_Handler = (void*) MCLK_Handler, /* 1 Main Clock */
.pfnOSCCTRL_0_Handler = (void*) OSCCTRL_0_Handler, /* 2 OSCCTRL_XOSCFAIL_0, OSCCTRL_XOSCRDY_0 */
.pfnOSCCTRL_1_Handler = (void*) OSCCTRL_1_Handler, /* 3 OSCCTRL_XOSCFAIL_1, OSCCTRL_XOSCRDY_1 */
.pfnOSCCTRL_2_Handler = (void*) OSCCTRL_2_Handler, /* 4 OSCCTRL_DFLLLOCKC, OSCCTRL_DFLLLOCKF, OSCCTRL_DFLLOOB, OSCCTRL_DFLLRCS, OSCCTRL_DFLLRDY */
.pfnOSCCTRL_3_Handler = (void*) OSCCTRL_3_Handler, /* 5 OSCCTRL_DPLLLCKF_0, OSCCTRL_DPLLLCKR_0, OSCCTRL_DPLLLDRTO_0, OSCCTRL_DPLLLTO_0 */
.pfnOSCCTRL_4_Handler = (void*) OSCCTRL_4_Handler, /* 6 OSCCTRL_DPLLLCKF_1, OSCCTRL_DPLLLCKR_1, OSCCTRL_DPLLLDRTO_1, OSCCTRL_DPLLLTO_1 */
.pfnOSC32KCTRL_Handler = (void*) OSC32KCTRL_Handler, /* 7 32kHz Oscillators Control */
.pfnSUPC_0_Handler = (void*) SUPC_0_Handler, /* 8 SUPC_B12SRDY, SUPC_B33SRDY, SUPC_BOD12RDY, SUPC_BOD33RDY, SUPC_VCORERDY, SUPC_VREGRDY */
.pfnSUPC_1_Handler = (void*) SUPC_1_Handler, /* 9 SUPC_BOD12DET, SUPC_BOD33DET */
.pfnWDT_Handler = (void*) WDT_Handler, /* 10 Watchdog Timer */
.pfnRTC_Handler = (void*) RTC_Handler, /* 11 Real-Time Counter */
.pfnEIC_0_Handler = (void*) EIC_0_Handler, /* 12 EIC_EXTINT_0 */
.pfnEIC_1_Handler = (void*) EIC_1_Handler, /* 13 EIC_EXTINT_1 */
.pfnEIC_2_Handler = (void*) EIC_2_Handler, /* 14 EIC_EXTINT_2 */
.pfnEIC_3_Handler = (void*) EIC_3_Handler, /* 15 EIC_EXTINT_3 */
.pfnEIC_4_Handler = (void*) EIC_4_Handler, /* 16 EIC_EXTINT_4 */
.pfnEIC_5_Handler = (void*) EIC_5_Handler, /* 17 EIC_EXTINT_5 */
.pfnEIC_6_Handler = (void*) EIC_6_Handler, /* 18 EIC_EXTINT_6 */
.pfnEIC_7_Handler = (void*) EIC_7_Handler, /* 19 EIC_EXTINT_7 */
.pfnEIC_8_Handler = (void*) EIC_8_Handler, /* 20 EIC_EXTINT_8 */
.pfnEIC_9_Handler = (void*) EIC_9_Handler, /* 21 EIC_EXTINT_9 */
.pfnEIC_10_Handler = (void*) EIC_10_Handler, /* 22 EIC_EXTINT_10 */
.pfnEIC_11_Handler = (void*) EIC_11_Handler, /* 23 EIC_EXTINT_11 */
.pfnEIC_12_Handler = (void*) EIC_12_Handler, /* 24 EIC_EXTINT_12 */
.pfnEIC_13_Handler = (void*) EIC_13_Handler, /* 25 EIC_EXTINT_13 */
.pfnEIC_14_Handler = (void*) EIC_14_Handler, /* 26 EIC_EXTINT_14 */
.pfnEIC_15_Handler = (void*) EIC_15_Handler, /* 27 EIC_EXTINT_15 */
.pfnFREQM_Handler = (void*) FREQM_Handler, /* 28 Frequency Meter */
.pfnNVMCTRL_0_Handler = (void*) NVMCTRL_0_Handler, /* 29 NVMCTRL_0, NVMCTRL_1, NVMCTRL_2, NVMCTRL_3, NVMCTRL_4, NVMCTRL_5, NVMCTRL_6, NVMCTRL_7 */
.pfnNVMCTRL_1_Handler = (void*) NVMCTRL_1_Handler, /* 30 NVMCTRL_10, NVMCTRL_8, NVMCTRL_9 */
.pfnDMAC_0_Handler = (void*) DMAC_0_Handler, /* 31 DMAC_SUSP_0, DMAC_TCMPL_0, DMAC_TERR_0 */
.pfnDMAC_1_Handler = (void*) DMAC_1_Handler, /* 32 DMAC_SUSP_1, DMAC_TCMPL_1, DMAC_TERR_1 */
.pfnDMAC_2_Handler = (void*) DMAC_2_Handler, /* 33 DMAC_SUSP_2, DMAC_TCMPL_2, DMAC_TERR_2 */
.pfnDMAC_3_Handler = (void*) DMAC_3_Handler, /* 34 DMAC_SUSP_3, DMAC_TCMPL_3, DMAC_TERR_3 */
.pfnDMAC_4_Handler = (void*) DMAC_4_Handler, /* 35 DMAC_SUSP_10, DMAC_SUSP_11, DMAC_SUSP_12, DMAC_SUSP_13, DMAC_SUSP_14, DMAC_SUSP_15, DMAC_SUSP_16, DMAC_SUSP_17, DMAC_SUSP_18, DMAC_SUSP_19, DMAC_SUSP_20, DMAC_SUSP_21, DMAC_SUSP_22, DMAC_SUSP_23, DMAC_SUSP_24, DMAC_SUSP_25, DMAC_SUSP_26, DMAC_SUSP_27, DMAC_SUSP_28, DMAC_SUSP_29, DMAC_SUSP_30, DMAC_SUSP_31, DMAC_SUSP_4, DMAC_SUSP_5, DMAC_SUSP_6, DMAC_SUSP_7, DMAC_SUSP_8, DMAC_SUSP_9, DMAC_TCMPL_10, DMAC_TCMPL_11, DMAC_TCMPL_12, DMAC_TCMPL_13, DMAC_TCMPL_14, DMAC_TCMPL_15, DMAC_TCMPL_16, DMAC_TCMPL_17, DMAC_TCMPL_18, DMAC_TCMPL_19, DMAC_TCMPL_20, DMAC_TCMPL_21, DMAC_TCMPL_22, DMAC_TCMPL_23, DMAC_TCMPL_24, DMAC_TCMPL_25, DMAC_TCMPL_26, DMAC_TCMPL_27, DMAC_TCMPL_28, DMAC_TCMPL_29, DMAC_TCMPL_30, DMAC_TCMPL_31, DMAC_TCMPL_4, DMAC_TCMPL_5, DMAC_TCMPL_6, DMAC_TCMPL_7, DMAC_TCMPL_8, DMAC_TCMPL_9, DMAC_TERR_10, DMAC_TERR_11, DMAC_TERR_12, DMAC_TERR_13, DMAC_TERR_14, DMAC_TERR_15, DMAC_TERR_16, DMAC_TERR_17, DMAC_TERR_18, DMAC_TERR_19, DMAC_TERR_20, DMAC_TERR_21, DMAC_TERR_22, DMAC_TERR_23, DMAC_TERR_24, DMAC_TERR_25, DMAC_TERR_26, DMAC_TERR_27, DMAC_TERR_28, DMAC_TERR_29, DMAC_TERR_30, DMAC_TERR_31, DMAC_TERR_4, DMAC_TERR_5, DMAC_TERR_6, DMAC_TERR_7, DMAC_TERR_8, DMAC_TERR_9 */
.pfnEVSYS_0_Handler = (void*) EVSYS_0_Handler, /* 36 EVSYS_EVD_0, EVSYS_OVR_0 */
.pfnEVSYS_1_Handler = (void*) EVSYS_1_Handler, /* 37 EVSYS_EVD_1, EVSYS_OVR_1 */
.pfnEVSYS_2_Handler = (void*) EVSYS_2_Handler, /* 38 EVSYS_EVD_2, EVSYS_OVR_2 */
.pfnEVSYS_3_Handler = (void*) EVSYS_3_Handler, /* 39 EVSYS_EVD_3, EVSYS_OVR_3 */
.pfnEVSYS_4_Handler = (void*) EVSYS_4_Handler, /* 40 EVSYS_EVD_10, EVSYS_EVD_11, EVSYS_EVD_4, EVSYS_EVD_5, EVSYS_EVD_6, EVSYS_EVD_7, EVSYS_EVD_8, EVSYS_EVD_9, EVSYS_OVR_10, EVSYS_OVR_11, EVSYS_OVR_4, EVSYS_OVR_5, EVSYS_OVR_6, EVSYS_OVR_7, EVSYS_OVR_8, EVSYS_OVR_9 */
.pfnPAC_Handler = (void*) PAC_Handler, /* 41 Peripheral Access Controller */
.pvReserved42 = (void*) (0UL), /* 42 Reserved */
.pvReserved43 = (void*) (0UL), /* 43 Reserved */
.pvReserved44 = (void*) (0UL), /* 44 Reserved */
.pfnRAMECC_Handler = (void*) RAMECC_Handler, /* 45 RAM ECC */
.pfnSERCOM0_0_Handler = (void*) SERCOM0_0_Handler, /* 46 SERCOM0_0 */
.pfnSERCOM0_1_Handler = (void*) SERCOM0_1_Handler, /* 47 SERCOM0_1 */
.pfnSERCOM0_2_Handler = (void*) SERCOM0_2_Handler, /* 48 SERCOM0_2 */
.pfnSERCOM0_3_Handler = (void*) SERCOM0_3_Handler, /* 49 SERCOM0_3, SERCOM0_4, SERCOM0_5, SERCOM0_6 */
.pfnSERCOM1_0_Handler = (void*) SERCOM1_0_Handler, /* 50 SERCOM1_0 */
.pfnSERCOM1_1_Handler = (void*) SERCOM1_1_Handler, /* 51 SERCOM1_1 */
.pfnSERCOM1_2_Handler = (void*) SERCOM1_2_Handler, /* 52 SERCOM1_2 */
.pfnSERCOM1_3_Handler = (void*) SERCOM1_3_Handler, /* 53 SERCOM1_3, SERCOM1_4, SERCOM1_5, SERCOM1_6 */
.pfnSERCOM2_0_Handler = (void*) SERCOM2_0_Handler, /* 54 SERCOM2_0 */
.pfnSERCOM2_1_Handler = (void*) SERCOM2_1_Handler, /* 55 SERCOM2_1 */
.pfnSERCOM2_2_Handler = (void*) SERCOM2_2_Handler, /* 56 SERCOM2_2 */
.pfnSERCOM2_3_Handler = (void*) SERCOM2_3_Handler, /* 57 SERCOM2_3, SERCOM2_4, SERCOM2_5, SERCOM2_6 */
.pfnSERCOM3_0_Handler = (void*) SERCOM3_0_Handler, /* 58 SERCOM3_0 */
.pfnSERCOM3_1_Handler = (void*) SERCOM3_1_Handler, /* 59 SERCOM3_1 */
.pfnSERCOM3_2_Handler = (void*) SERCOM3_2_Handler, /* 60 SERCOM3_2 */
.pfnSERCOM3_3_Handler = (void*) SERCOM3_3_Handler, /* 61 SERCOM3_3, SERCOM3_4, SERCOM3_5, SERCOM3_6 */
#ifdef ID_SERCOM4
.pfnSERCOM4_0_Handler = (void*) SERCOM4_0_Handler, /* 62 SERCOM4_0 */
.pfnSERCOM4_1_Handler = (void*) SERCOM4_1_Handler, /* 63 SERCOM4_1 */
.pfnSERCOM4_2_Handler = (void*) SERCOM4_2_Handler, /* 64 SERCOM4_2 */
.pfnSERCOM4_3_Handler = (void*) SERCOM4_3_Handler, /* 65 SERCOM4_3, SERCOM4_4, SERCOM4_5, SERCOM4_6 */
#else
.pvReserved62 = (void*) (0UL), /* 62 Reserved */
.pvReserved63 = (void*) (0UL), /* 63 Reserved */
.pvReserved64 = (void*) (0UL), /* 64 Reserved */
.pvReserved65 = (void*) (0UL), /* 65 Reserved */
#endif
#ifdef ID_SERCOM5
.pfnSERCOM5_0_Handler = (void*) SERCOM5_0_Handler, /* 66 SERCOM5_0 */
.pfnSERCOM5_1_Handler = (void*) SERCOM5_1_Handler, /* 67 SERCOM5_1 */
.pfnSERCOM5_2_Handler = (void*) SERCOM5_2_Handler, /* 68 SERCOM5_2 */
.pfnSERCOM5_3_Handler = (void*) SERCOM5_3_Handler, /* 69 SERCOM5_3, SERCOM5_4, SERCOM5_5, SERCOM5_6 */
#else
.pvReserved66 = (void*) (0UL), /* 66 Reserved */
.pvReserved67 = (void*) (0UL), /* 67 Reserved */
.pvReserved68 = (void*) (0UL), /* 68 Reserved */
.pvReserved69 = (void*) (0UL), /* 69 Reserved */
#endif
#ifdef ID_SERCOM6
.pfnSERCOM6_0_Handler = (void*) SERCOM6_0_Handler, /* 70 SERCOM6_0 */
.pfnSERCOM6_1_Handler = (void*) SERCOM6_1_Handler, /* 71 SERCOM6_1 */
.pfnSERCOM6_2_Handler = (void*) SERCOM6_2_Handler, /* 72 SERCOM6_2 */
.pfnSERCOM6_3_Handler = (void*) SERCOM6_3_Handler, /* 73 SERCOM6_3, SERCOM6_4, SERCOM6_5, SERCOM6_6 */
#else
.pvReserved70 = (void*) (0UL), /* 70 Reserved */
.pvReserved71 = (void*) (0UL), /* 71 Reserved */
.pvReserved72 = (void*) (0UL), /* 72 Reserved */
.pvReserved73 = (void*) (0UL), /* 73 Reserved */
#endif
#ifdef ID_SERCOM7
.pfnSERCOM7_0_Handler = (void*) SERCOM7_0_Handler, /* 74 SERCOM7_0 */
.pfnSERCOM7_1_Handler = (void*) SERCOM7_1_Handler, /* 75 SERCOM7_1 */
.pfnSERCOM7_2_Handler = (void*) SERCOM7_2_Handler, /* 76 SERCOM7_2 */
.pfnSERCOM7_3_Handler = (void*) SERCOM7_3_Handler, /* 77 SERCOM7_3, SERCOM7_4, SERCOM7_5, SERCOM7_6 */
#else
.pvReserved74 = (void*) (0UL), /* 74 Reserved */
.pvReserved75 = (void*) (0UL), /* 75 Reserved */
.pvReserved76 = (void*) (0UL), /* 76 Reserved */
.pvReserved77 = (void*) (0UL), /* 77 Reserved */
#endif
#ifdef ID_CAN0
.pfnCAN0_Handler = (void*) CAN0_Handler, /* 78 Control Area Network 0 */
#else
.pvReserved78 = (void*) (0UL), /* 78 Reserved */
#endif
#ifdef ID_CAN1
.pfnCAN1_Handler = (void*) CAN1_Handler, /* 79 Control Area Network 1 */
#else
.pvReserved79 = (void*) (0UL), /* 79 Reserved */
#endif
#ifdef ID_USB
.pfnUSB_0_Handler = (void*) USB_0_Handler, /* 80 USB_EORSM_DNRSM, USB_EORST_RST, USB_LPMSUSP_DDISC, USB_LPM_DCONN, USB_MSOF, USB_RAMACER, USB_RXSTP_TXSTP_0, USB_RXSTP_TXSTP_1, USB_RXSTP_TXSTP_2, USB_RXSTP_TXSTP_3, USB_RXSTP_TXSTP_4, USB_RXSTP_TXSTP_5, USB_RXSTP_TXSTP_6, USB_RXSTP_TXSTP_7, USB_STALL0_STALL_0, USB_STALL0_STALL_1, USB_STALL0_STALL_2, USB_STALL0_STALL_3, USB_STALL0_STALL_4, USB_STALL0_STALL_5, USB_STALL0_STALL_6, USB_STALL0_STALL_7, USB_STALL1_0, USB_STALL1_1, USB_STALL1_2, USB_STALL1_3, USB_STALL1_4, USB_STALL1_5, USB_STALL1_6, USB_STALL1_7, USB_SUSPEND, USB_TRFAIL0_TRFAIL_0, USB_TRFAIL0_TRFAIL_1, USB_TRFAIL0_TRFAIL_2, USB_TRFAIL0_TRFAIL_3, USB_TRFAIL0_TRFAIL_4, USB_TRFAIL0_TRFAIL_5, USB_TRFAIL0_TRFAIL_6, USB_TRFAIL0_TRFAIL_7, USB_TRFAIL1_PERR_0, USB_TRFAIL1_PERR_1, USB_TRFAIL1_PERR_2, USB_TRFAIL1_PERR_3, USB_TRFAIL1_PERR_4, USB_TRFAIL1_PERR_5, USB_TRFAIL1_PERR_6, USB_TRFAIL1_PERR_7, USB_UPRSM, USB_WAKEUP */
.pfnUSB_1_Handler = (void*) USB_1_Handler, /* 81 USB_SOF_HSOF */
.pfnUSB_2_Handler = (void*) USB_2_Handler, /* 82 USB_TRCPT0_0, USB_TRCPT0_1, USB_TRCPT0_2, USB_TRCPT0_3, USB_TRCPT0_4, USB_TRCPT0_5, USB_TRCPT0_6, USB_TRCPT0_7 */
.pfnUSB_3_Handler = (void*) USB_3_Handler, /* 83 USB_TRCPT1_0, USB_TRCPT1_1, USB_TRCPT1_2, USB_TRCPT1_3, USB_TRCPT1_4, USB_TRCPT1_5, USB_TRCPT1_6, USB_TRCPT1_7 */
#else
.pvReserved80 = (void*) (0UL), /* 80 Reserved */
.pvReserved81 = (void*) (0UL), /* 81 Reserved */
.pvReserved82 = (void*) (0UL), /* 82 Reserved */
.pvReserved83 = (void*) (0UL), /* 83 Reserved */
#endif
#ifdef ID_GMAC
.pfnGMAC_Handler = (void*) GMAC_Handler, /* 84 Ethernet MAC */
#else
.pvReserved84 = (void*) (0UL), /* 84 Reserved */
#endif
.pfnTCC0_0_Handler = (void*) TCC0_0_Handler, /* 85 TCC0_CNT_A, TCC0_DFS_A, TCC0_ERR_A, TCC0_FAULT0_A, TCC0_FAULT1_A, TCC0_FAULTA_A, TCC0_FAULTB_A, TCC0_OVF, TCC0_TRG, TCC0_UFS_A */
.pfnTCC0_1_Handler = (void*) TCC0_1_Handler, /* 86 TCC0_MC_0 */
.pfnTCC0_2_Handler = (void*) TCC0_2_Handler, /* 87 TCC0_MC_1 */
.pfnTCC0_3_Handler = (void*) TCC0_3_Handler, /* 88 TCC0_MC_2 */
.pfnTCC0_4_Handler = (void*) TCC0_4_Handler, /* 89 TCC0_MC_3 */
.pfnTCC0_5_Handler = (void*) TCC0_5_Handler, /* 90 TCC0_MC_4 */
.pfnTCC0_6_Handler = (void*) TCC0_6_Handler, /* 91 TCC0_MC_5 */
.pfnTCC1_0_Handler = (void*) TCC1_0_Handler, /* 92 TCC1_CNT_A, TCC1_DFS_A, TCC1_ERR_A, TCC1_FAULT0_A, TCC1_FAULT1_A, TCC1_FAULTA_A, TCC1_FAULTB_A, TCC1_OVF, TCC1_TRG, TCC1_UFS_A */
.pfnTCC1_1_Handler = (void*) TCC1_1_Handler, /* 93 TCC1_MC_0 */
.pfnTCC1_2_Handler = (void*) TCC1_2_Handler, /* 94 TCC1_MC_1 */
.pfnTCC1_3_Handler = (void*) TCC1_3_Handler, /* 95 TCC1_MC_2 */
.pfnTCC1_4_Handler = (void*) TCC1_4_Handler, /* 96 TCC1_MC_3 */
.pfnTCC2_0_Handler = (void*) TCC2_0_Handler, /* 97 TCC2_CNT_A, TCC2_DFS_A, TCC2_ERR_A, TCC2_FAULT0_A, TCC2_FAULT1_A, TCC2_FAULTA_A, TCC2_FAULTB_A, TCC2_OVF, TCC2_TRG, TCC2_UFS_A */
.pfnTCC2_1_Handler = (void*) TCC2_1_Handler, /* 98 TCC2_MC_0 */
.pfnTCC2_2_Handler = (void*) TCC2_2_Handler, /* 99 TCC2_MC_1 */
.pfnTCC2_3_Handler = (void*) TCC2_3_Handler, /* 100 TCC2_MC_2 */
#ifdef ID_TCC3
.pfnTCC3_0_Handler = (void*) TCC3_0_Handler, /* 101 TCC3_CNT_A, TCC3_DFS_A, TCC3_ERR_A, TCC3_FAULT0_A, TCC3_FAULT1_A, TCC3_FAULTA_A, TCC3_FAULTB_A, TCC3_OVF, TCC3_TRG, TCC3_UFS_A */
.pfnTCC3_1_Handler = (void*) TCC3_1_Handler, /* 102 TCC3_MC_0 */
.pfnTCC3_2_Handler = (void*) TCC3_2_Handler, /* 103 TCC3_MC_1 */
#else
.pvReserved101 = (void*) (0UL), /* 101 Reserved */
.pvReserved102 = (void*) (0UL), /* 102 Reserved */
.pvReserved103 = (void*) (0UL), /* 103 Reserved */
#endif
#ifdef ID_TCC4
.pfnTCC4_0_Handler = (void*) TCC4_0_Handler, /* 104 TCC4_CNT_A, TCC4_DFS_A, TCC4_ERR_A, TCC4_FAULT0_A, TCC4_FAULT1_A, TCC4_FAULTA_A, TCC4_FAULTB_A, TCC4_OVF, TCC4_TRG, TCC4_UFS_A */
.pfnTCC4_1_Handler = (void*) TCC4_1_Handler, /* 105 TCC4_MC_0 */
.pfnTCC4_2_Handler = (void*) TCC4_2_Handler, /* 106 TCC4_MC_1 */
#else
.pvReserved104 = (void*) (0UL), /* 104 Reserved */
.pvReserved105 = (void*) (0UL), /* 105 Reserved */
.pvReserved106 = (void*) (0UL), /* 106 Reserved */
#endif
.pfnTC0_Handler = (void*) TC0_Handler, /* 107 Basic Timer Counter 0 */
.pfnTC1_Handler = (void*) TC1_Handler, /* 108 Basic Timer Counter 1 */
.pfnTC2_Handler = (void*) TC2_Handler, /* 109 Basic Timer Counter 2 */
.pfnTC3_Handler = (void*) TC3_Handler, /* 110 Basic Timer Counter 3 */
#ifdef ID_TC4
.pfnTC4_Handler = (void*) TC4_Handler, /* 111 Basic Timer Counter 4 */
#else
.pvReserved111 = (void*) (0UL), /* 111 Reserved */
#endif
#ifdef ID_TC5
.pfnTC5_Handler = (void*) TC5_Handler, /* 112 Basic Timer Counter 5 */
#else
.pvReserved112 = (void*) (0UL), /* 112 Reserved */
#endif
#ifdef ID_TC6
.pfnTC6_Handler = (void*) TC6_Handler, /* 113 Basic Timer Counter 6 */
#else
.pvReserved113 = (void*) (0UL), /* 113 Reserved */
#endif
#ifdef ID_TC7
.pfnTC7_Handler = (void*) TC7_Handler, /* 114 Basic Timer Counter 7 */
#else
.pvReserved114 = (void*) (0UL), /* 114 Reserved */
#endif
.pfnPDEC_0_Handler = (void*) PDEC_0_Handler, /* 115 PDEC_DIR_A, PDEC_ERR_A, PDEC_OVF, PDEC_VLC_A */
.pfnPDEC_1_Handler = (void*) PDEC_1_Handler, /* 116 PDEC_MC_0 */
.pfnPDEC_2_Handler = (void*) PDEC_2_Handler, /* 117 PDEC_MC_1 */
.pfnADC0_0_Handler = (void*) ADC0_0_Handler, /* 118 ADC0_OVERRUN, ADC0_WINMON */
.pfnADC0_1_Handler = (void*) ADC0_1_Handler, /* 119 ADC0_RESRDY */
.pfnADC1_0_Handler = (void*) ADC1_0_Handler, /* 120 ADC1_OVERRUN, ADC1_WINMON */
.pfnADC1_1_Handler = (void*) ADC1_1_Handler, /* 121 ADC1_RESRDY */
.pfnAC_Handler = (void*) AC_Handler, /* 122 Analog Comparators */
.pfnDAC_0_Handler = (void*) DAC_0_Handler, /* 123 DAC_OVERRUN_A_0, DAC_OVERRUN_A_1, DAC_UNDERRUN_A_0, DAC_UNDERRUN_A_1 */
.pfnDAC_1_Handler = (void*) DAC_1_Handler, /* 124 DAC_EMPTY_0 */
.pfnDAC_2_Handler = (void*) DAC_2_Handler, /* 125 DAC_EMPTY_1 */
.pfnDAC_3_Handler = (void*) DAC_3_Handler, /* 126 DAC_RESRDY_0 */
.pfnDAC_4_Handler = (void*) DAC_4_Handler, /* 127 DAC_RESRDY_1 */
#ifdef ID_I2S
.pfnI2S_Handler = (void*) I2S_Handler, /* 128 Inter-IC Sound Interface */
#else
.pvReserved128 = (void*) (0UL), /* 128 Reserved */
#endif
.pfnPCC_Handler = (void*) PCC_Handler, /* 129 Parallel Capture Controller */
.pfnAES_Handler = (void*) AES_Handler, /* 130 Advanced Encryption Standard */
.pfnTRNG_Handler = (void*) TRNG_Handler, /* 131 True Random Generator */
#ifdef ID_ICM
.pfnICM_Handler = (void*) ICM_Handler, /* 132 Integrity Check Monitor */
#else
.pvReserved132 = (void*) (0UL), /* 132 Reserved */
#endif
#ifdef ID_PUKCC
.pfnPUKCC_Handler = (void*) PUKCC_Handler, /* 133 PUblic-Key Cryptography Controller */
#else
.pvReserved133 = (void*) (0UL), /* 133 Reserved */
#endif
.pfnQSPI_Handler = (void*) QSPI_Handler, /* 134 Quad SPI interface */
#ifdef ID_SDHC0
.pfnSDHC0_Handler = (void*) SDHC0_Handler, /* 135 SD/MMC Host Controller 0 */
#else
.pvReserved135 = (void*) (0UL), /* 135 Reserved */
#endif
#ifdef ID_SDHC1
.pfnSDHC1_Handler = (void*) SDHC1_Handler /* 136 SD/MMC Host Controller 1 */
#else
.pvReserved136 = (void*) (0UL) /* 136 Reserved */
#endif
};
/**
* \brief This is the code that gets called on processor reset.
* To initialize the device, and call the main() routine.
*/
void Reset_Handler(void)
{
uint32_t *pSrc, *pDest;
/* Initialize the relocate segment */
pSrc = &_etext;
pDest = &_srelocate;
if (pSrc != pDest) {
for (; pDest < &_erelocate;) {
*pDest++ = *pSrc++;
}
}
/* Clear the zero segment */
for (pDest = &_szero; pDest < &_ezero;) {
*pDest++ = 0;
}
/* Set the vector table base address */
pSrc = (uint32_t *) & _sfixed;
SCB->VTOR = ((uint32_t) pSrc & SCB_VTOR_TBLOFF_Msk);
#if __FPU_USED
/* Enable FPU */
SCB->CPACR |= (0xFu << 20);
__DSB();
__ISB();
#endif
/* Initialize the C library */
__libc_init_array();
/* Branch to main function */
main();
/* Infinite loop */
while (1);
}
/**
* \brief Default interrupt handler for unused IRQs.
*/
void Dummy_Handler(void)
{
while (1) {
}
}

View File

@ -0,0 +1,64 @@
/**
* \file
*
* \brief Low-level initialization functions called upon chip startup.
*
* Copyright (c) 2019 Microchip Technology Inc.
*
* \asf_license_start
*
* \page License
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the Licence at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* \asf_license_stop
*
*/
#include "same51.h"
/**
* Initial system clock frequency. The System RC Oscillator (RCSYS) provides
* the source for the main clock at chip startup.
*/
#define __SYSTEM_CLOCK (48000000)
uint32_t SystemCoreClock = __SYSTEM_CLOCK;/*!< System Clock Frequency (Core Clock)*/
/**
* Initialize the system
*
* @brief Setup the microcontroller system.
* Initialize the System and update the SystemCoreClock variable.
*/
void SystemInit(void)
{
// Keep the default device state after reset
SystemCoreClock = __SYSTEM_CLOCK;
return;
}
/**
* Update SystemCoreClock variable
*
* @brief Updates the SystemCoreClock with current core Clock
* retrieved from cpu registers.
*/
void SystemCoreClockUpdate(void)
{
// Not implemented
SystemCoreClock = __SYSTEM_CLOCK;
return;
}

View File

@ -0,0 +1,9 @@
#include <atmel_start.h>
/**
* Initializes MCU, drivers and middleware in the project
**/
void atmel_start_init(void)
{
system_init();
}

View File

@ -0,0 +1,80 @@
/*
* Code generated from Atmel Start.
*
* This file will be overwritten when reconfiguring your Atmel Start project.
* Please copy examples or other code you want to keep to a separate file
* to avoid losing it when reconfiguring.
*/
#ifndef ATMEL_START_PINS_H_INCLUDED
#define ATMEL_START_PINS_H_INCLUDED
#include <hal_gpio.h>
// SAME51 has 14 pin functions
#define GPIO_PIN_FUNCTION_A 0
#define GPIO_PIN_FUNCTION_B 1
#define GPIO_PIN_FUNCTION_C 2
#define GPIO_PIN_FUNCTION_D 3
#define GPIO_PIN_FUNCTION_E 4
#define GPIO_PIN_FUNCTION_F 5
#define GPIO_PIN_FUNCTION_G 6
#define GPIO_PIN_FUNCTION_H 7
#define GPIO_PIN_FUNCTION_I 8
#define GPIO_PIN_FUNCTION_J 9
#define GPIO_PIN_FUNCTION_K 10
#define GPIO_PIN_FUNCTION_L 11
#define GPIO_PIN_FUNCTION_M 12
#define GPIO_PIN_FUNCTION_N 13
#define SPI1_MOSI GPIO(GPIO_PORTA, 0)
#define SPI1_SCK GPIO(GPIO_PORTA, 1)
#define ALOG_0 GPIO(GPIO_PORTA, 2)
#define ANAREF_2V48 GPIO(GPIO_PORTA, 3)
#define M1_HALLA GPIO(GPIO_PORTA, 4)
#define M1_HALLB GPIO(GPIO_PORTA, 5)
#define M1_HALLC GPIO(GPIO_PORTA, 6)
#define ECAT_SYNC GPIO(GPIO_PORTA, 7)
#define ECAT_QSPI_MOSI GPIO(GPIO_PORTA, 8)
#define ECAT_QSPI_MISO GPIO(GPIO_PORTA, 9)
#define ECAT_QSPI_DATA2 GPIO(GPIO_PORTA, 10)
#define ECAT_QSPI_DATA3 GPIO(GPIO_PORTA, 11)
#define SPI2_MOSI GPIO(GPIO_PORTA, 12)
#define SPI2_SCK GPIO(GPIO_PORTA, 13)
#define SPI2_SS GPIO(GPIO_PORTA, 14)
#define SPI2_MISO GPIO(GPIO_PORTA, 15)
#define M2_PWMA GPIO(GPIO_PORTA, 16)
#define M2_PWMB GPIO(GPIO_PORTA, 17)
#define M2_PWMC GPIO(GPIO_PORTA, 18)
#define M2_ENA GPIO(GPIO_PORTA, 19)
#define M2_ENB GPIO(GPIO_PORTA, 20)
#define M2_ENC GPIO(GPIO_PORTA, 21)
#define M2_HALLA GPIO(GPIO_PORTA, 22)
#define M2_HALLB GPIO(GPIO_PORTA, 23)
#define M2_HALLC GPIO(GPIO_PORTA, 24)
#define M1_RST GPIO(GPIO_PORTA, 25)
#define M2_RST GPIO(GPIO_PORTA, 27)
#define SPI3_SS GPIO(GPIO_PORTB, 0)
#define SPI3_MISO GPIO(GPIO_PORTB, 1)
#define SPI3_MOSI GPIO(GPIO_PORTB, 2)
#define SPI3_SCK GPIO(GPIO_PORTB, 3)
#define M1_IA GPIO(GPIO_PORTB, 4)
#define M1_IB GPIO(GPIO_PORTB, 5)
#define M2_IA GPIO(GPIO_PORTB, 6)
#define M2_IB GPIO(GPIO_PORTB, 7)
#define half_VREF GPIO(GPIO_PORTB, 8)
#define ALOG_2 GPIO(GPIO_PORTB, 9)
#define ECAT_QSPI_SCK GPIO(GPIO_PORTB, 10)
#define ECAT_QSPI_CS GPIO(GPIO_PORTB, 11)
#define M1_PWMA GPIO(GPIO_PORTB, 12)
#define M1_PWMB GPIO(GPIO_PORTB, 13)
#define M1_PWMC GPIO(GPIO_PORTB, 14)
#define M1_ENA GPIO(GPIO_PORTB, 15)
#define M1_ENB GPIO(GPIO_PORTB, 16)
#define M1_ENC GPIO(GPIO_PORTB, 17)
#define SPI1_CS GPIO(GPIO_PORTB, 22)
#define SPI1_MISO GPIO(GPIO_PORTB, 23)
#define M1_RST_Bar GPIO(GPIO_PORTB, 30)
#define M2_RST_Bar GPIO(GPIO_PORTB, 31)
#endif // ATMEL_START_PINS_H_INCLUDED

View File

@ -0,0 +1,7 @@
/*
* bldc.c
*
* Created: 31/07/2021 14:56:17
* Author: Nick-XMG
*/

View File

@ -0,0 +1,95 @@
/*
* bldc.h
*
* Created: 31/07/2021 14:56:02
* Author: Nick-XMG
*/
#ifndef BLDC_H_
#define BLDC_H_
// ----------------------------------------------------------------------
// M1 Hall Parameters
// ----------------------------------------------------------------------
#define M1_HALL_A_PIN GPIO(GPIO_PORTA, 22)
#define M1_HALL_A_PORT PORT_PA22
#define M1_HALL_A_MASK ~(1<<0)
#define M1_HALL_A_LSR M1_HALL_A_PIN - M1_HALL_A_GROUP*32 -0
#define M1_HALL_A_GROUP M1_HALL_A_PIN/32
#define M1_HALL_B_PIN GPIO(GPIO_PORTA, 23)
#define M1_HALL_B_PORT PORT_PA23
#define M1_HALL_B_MASK ~(1<<1)
#define M1_HALL_B_LSR M1_HALL_B_PIN - M1_HALL_B_GROUP*32 -1
#define M1_HALL_B_GROUP M1_HALL_B_PIN/32
#define M1_HALL_C_PIN GPIO(GPIO_PORTA, 24)
#define M1_HALL_C_PORT PORT_PA24
#define M1_HALL_C_MASK ~(1<<2)
#define M1_HALL_C_LSR M1_HALL_C_PIN - M1_HALL_C_GROUP*32 -2
#define M1_HALL_C_GROUP M1_HALL_C_PIN/32
// ----------------------------------------------------------------------
// M2 Hall Parameters
// ----------------------------------------------------------------------
#define M2_HALL_A_PIN GPIO(GPIO_PORTA, 4)
#define M2_HALL_A_PORT PORT_PA04
#define M2_HALL_A_MASK ~(1<<0)
#define M2_HALL_A_LSR M2_HALL_A_PIN - M2_HALL_A_GROUP*32 -0
#define M2_HALL_A_GROUP M2_HALL_A_PIN/32
#define M2_HALL_B_PIN GPIO(GPIO_PORTA, 5)
#define M2_HALL_B_PORT PORT_PA05
#define M2_HALL_B_MASK ~(1<<1)
#define M2_HALL_B_LSR M2_HALL_B_PIN - M2_HALL_B_GROUP*32 -1
#define M2_HALL_B_GROUP M2_HALL_B_PIN/32
#define M2_HALL_C_PIN GPIO(GPIO_PORTA, 6)
#define M2_HALL_C_PORT PORT_PA06
#define M2_HALL_C_MASK ~(1<<2)
#define M2_HALL_C_LSR M2_HALL_C_PIN - M2_HALL_C_GROUP*32 -2
#define M2_HALL_C_GROUP M2_HALL_C_PIN/32
static inline uint8_t readM1Hall(void)
{
//volatile uint8_t motor_read = 0;
//motor_read = (motor_read & M1_HALL_A_MASK) | (uint8_t)((PORT->Group[M1_HALL_A_GROUP].IN.reg & M1_HALL_A_PORT)>>(M1_HALL_A_LSR));
//motor_read = (motor_read & M1_HALL_B_MASK) | (uint8_t)((PORT->Group[M1_HALL_B_GROUP].IN.reg & M1_HALL_B_PORT)>>(M1_HALL_B_LSR));
//motor_read = (motor_read & M1_HALL_C_MASK) | (uint8_t)((PORT->Group[M1_HALL_C_GROUP].IN.reg & M1_HALL_C_PORT)>>(M1_HALL_C_LSR));
//
//return motor_read;
volatile uint8_t a = gpio_get_pin_level(M1_HALL_A_PIN);
volatile uint8_t b = gpio_get_pin_level(M1_HALL_B_PIN);
volatile uint8_t c = gpio_get_pin_level(M1_HALL_C_PIN);
return ((a << 2) |
(b << 1) |
(c << 0));
}
static inline uint8_t readM2Hall(void)
{
//volatile uint8_t motor_read = 0;
//motor_read = (motor_read & M2_HALL_A_MASK) | (uint8_t)((PORT->Group[M2_HALL_A_GROUP].IN.reg & M2_HALL_A_PORT)>>(M2_HALL_A_LSR));
//motor_read = (motor_read & M2_HALL_B_MASK) | (uint8_t)((PORT->Group[M2_HALL_B_GROUP].IN.reg & M2_HALL_B_PORT)>>(M2_HALL_B_LSR));
//motor_read = (motor_read & M2_HALL_C_MASK) | (uint8_t)((PORT->Group[M2_HALL_C_GROUP].IN.reg & M2_HALL_C_PORT)>>(M2_HALL_C_LSR));
//
//return motor_read;
volatile uint8_t a = gpio_get_pin_level(M2_HALL_A_PIN);
volatile uint8_t b = gpio_get_pin_level(M2_HALL_B_PIN);
volatile uint8_t c = gpio_get_pin_level(M2_HALL_C_PIN);
return ((a << 2) |
(b << 1) |
(c << 0));
}
#endif /* BLDC_H_ */

View File

@ -0,0 +1,969 @@
/*
* Code generated from Atmel Start.
*
* This file will be overwritten when reconfiguring your Atmel Start project.
* Please copy examples or other code you want to keep to a separate file
* to avoid losing it when reconfiguring.
*/
#include "driver_init.h"
#include <peripheral_clk_config.h>
#include <utils.h>
#include <hal_init.h>
#include <hpl_adc_base.h>
#include <hpl_adc_base.h>
struct spi_m_sync_descriptor SPI_1;
struct spi_m_sync_descriptor SPI_3;
struct adc_sync_descriptor ADC_0;
struct adc_sync_descriptor ADC_1;
struct qspi_sync_descriptor QUAD_SPI_0;
struct spi_m_async_descriptor SPI_2;
struct pwm_descriptor PWM_0;
struct pwm_descriptor PWM_1;
void ADC_0_PORT_init(void)
{
// Disable digital pin circuitry
gpio_set_pin_direction(ALOG_0, GPIO_DIRECTION_OFF);
gpio_set_pin_function(ALOG_0, PINMUX_PA02B_ADC0_AIN0);
// Disable digital pin circuitry
gpio_set_pin_direction(ALOG_2, GPIO_DIRECTION_OFF);
gpio_set_pin_function(ALOG_2, PINMUX_PB09B_ADC0_AIN3);
}
void ADC_0_CLOCK_init(void)
{
hri_mclk_set_APBDMASK_ADC0_bit(MCLK);
hri_gclk_write_PCHCTRL_reg(GCLK, ADC0_GCLK_ID, CONF_GCLK_ADC0_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
}
void ADC_0_init(void)
{
ADC_0_CLOCK_init();
ADC_0_PORT_init();
adc_sync_init(&ADC_0, ADC0, (void *)NULL);
}
void ADC_1_PORT_init(void)
{
// Disable digital pin circuitry
gpio_set_pin_direction(M1_IA, GPIO_DIRECTION_OFF);
gpio_set_pin_function(M1_IA, PINMUX_PB04B_ADC1_AIN6);
// Disable digital pin circuitry
gpio_set_pin_direction(M1_IB, GPIO_DIRECTION_OFF);
gpio_set_pin_function(M1_IB, PINMUX_PB05B_ADC1_AIN7);
// Disable digital pin circuitry
gpio_set_pin_direction(M2_IA, GPIO_DIRECTION_OFF);
gpio_set_pin_function(M2_IA, PINMUX_PB06B_ADC1_AIN8);
// Disable digital pin circuitry
gpio_set_pin_direction(M2_IB, GPIO_DIRECTION_OFF);
gpio_set_pin_function(M2_IB, PINMUX_PB07B_ADC1_AIN9);
}
void ADC_1_CLOCK_init(void)
{
hri_mclk_set_APBDMASK_ADC1_bit(MCLK);
hri_gclk_write_PCHCTRL_reg(GCLK, ADC1_GCLK_ID, CONF_GCLK_ADC1_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
}
void ADC_1_init(void)
{
ADC_1_CLOCK_init();
ADC_1_PORT_init();
adc_sync_init(&ADC_1, ADC1, (void *)NULL);
}
void DIGITAL_GLUE_LOGIC_0_PORT_init(void)
{
gpio_set_pin_direction(M1_HALLA,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_IN);
gpio_set_pin_level(M1_HALLA,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(M1_HALLA,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_UP);
gpio_set_pin_function(M1_HALLA,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA04N_CCL_IN0"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
GPIO_PIN_FUNCTION_N);
gpio_set_pin_direction(M1_HALLB,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_IN);
gpio_set_pin_level(M1_HALLB,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(M1_HALLB,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_UP);
gpio_set_pin_function(M1_HALLB,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA05N_CCL_IN1"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
GPIO_PIN_FUNCTION_N);
gpio_set_pin_direction(M1_HALLC,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_IN);
gpio_set_pin_level(M1_HALLC,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(M1_HALLC,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_UP);
gpio_set_pin_function(M1_HALLC,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA06N_CCL_IN2"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
GPIO_PIN_FUNCTION_N);
gpio_set_pin_direction(M2_HALLA,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_IN);
gpio_set_pin_level(M2_HALLA,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(M2_HALLA,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_UP);
gpio_set_pin_function(M2_HALLA,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA22N_CCL_IN6"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
GPIO_PIN_FUNCTION_N);
gpio_set_pin_direction(M2_HALLB,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_IN);
gpio_set_pin_level(M2_HALLB,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(M2_HALLB,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_UP);
gpio_set_pin_function(M2_HALLB,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA23N_CCL_IN7"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
GPIO_PIN_FUNCTION_N);
gpio_set_pin_direction(M2_HALLC,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_IN);
gpio_set_pin_level(M2_HALLC,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(M2_HALLC,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_UP);
gpio_set_pin_function(M2_HALLC,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA24N_CCL_IN8"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
GPIO_PIN_FUNCTION_N);
}
void DIGITAL_GLUE_LOGIC_0_CLOCK_init(void)
{
hri_mclk_set_APBCMASK_CCL_bit(MCLK);
hri_gclk_write_PCHCTRL_reg(GCLK, CCL_GCLK_ID, CONF_GCLK_CCL_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
}
void DIGITAL_GLUE_LOGIC_0_init(void)
{
DIGITAL_GLUE_LOGIC_0_CLOCK_init();
custom_logic_init();
DIGITAL_GLUE_LOGIC_0_PORT_init();
}
void EXTERNAL_IRQ_0_init(void)
{
hri_gclk_write_PCHCTRL_reg(GCLK, EIC_GCLK_ID, CONF_GCLK_EIC_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
hri_mclk_set_APBAMASK_EIC_bit(MCLK);
// Set pin direction to input
gpio_set_pin_direction(ECAT_SYNC, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(ECAT_SYNC,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(ECAT_SYNC, PINMUX_PA07A_EIC_EXTINT7);
// Set pin direction to input
gpio_set_pin_direction(M1_RST_Bar, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(M1_RST_Bar,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(M1_RST_Bar, PINMUX_PB30A_EIC_EXTINT14);
// Set pin direction to input
gpio_set_pin_direction(M2_RST_Bar, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(M2_RST_Bar,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(M2_RST_Bar, PINMUX_PB31A_EIC_EXTINT15);
ext_irq_init();
}
void EVENT_SYSTEM_0_init(void)
{
hri_mclk_set_APBBMASK_EVSYS_bit(MCLK);
event_system_init();
}
void QUAD_SPI_0_PORT_init(void)
{
// Set pin direction to input
gpio_set_pin_direction(ECAT_QSPI_CS, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(ECAT_QSPI_CS,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(ECAT_QSPI_CS, PINMUX_PB11H_QSPI_CS);
gpio_set_pin_direction(ECAT_QSPI_MOSI,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_OUT);
gpio_set_pin_level(ECAT_QSPI_MOSI,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(ECAT_QSPI_MOSI,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(ECAT_QSPI_MOSI,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA08H_QSPI_DATA0"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
PINMUX_PA08H_QSPI_DATA0);
gpio_set_pin_direction(ECAT_QSPI_MISO,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_OUT);
gpio_set_pin_level(ECAT_QSPI_MISO,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(ECAT_QSPI_MISO,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(ECAT_QSPI_MISO,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA09H_QSPI_DATA1"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
PINMUX_PA09H_QSPI_DATA1);
gpio_set_pin_direction(ECAT_QSPI_DATA2,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_OUT);
gpio_set_pin_level(ECAT_QSPI_DATA2,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(ECAT_QSPI_DATA2,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(ECAT_QSPI_DATA2,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA10H_QSPI_DATA2"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
PINMUX_PA10H_QSPI_DATA2);
gpio_set_pin_direction(ECAT_QSPI_DATA3,
// <y> Pin direction
// <id> pad_direction
// <GPIO_DIRECTION_OFF"> Off
// <GPIO_DIRECTION_IN"> In
// <GPIO_DIRECTION_OUT"> Out
GPIO_DIRECTION_OUT);
gpio_set_pin_level(ECAT_QSPI_DATA3,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
gpio_set_pin_pull_mode(ECAT_QSPI_DATA3,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(ECAT_QSPI_DATA3,
// <y> Pin function
// <id> pad_function
// <i> Auto : use driver pinmux if signal is imported by driver, else turn off function
// <PINMUX_PA11H_QSPI_DATA3"> Auto
// <GPIO_PIN_FUNCTION_OFF"> Off
// <GPIO_PIN_FUNCTION_A"> A
// <GPIO_PIN_FUNCTION_B"> B
// <GPIO_PIN_FUNCTION_C"> C
// <GPIO_PIN_FUNCTION_D"> D
// <GPIO_PIN_FUNCTION_E"> E
// <GPIO_PIN_FUNCTION_F"> F
// <GPIO_PIN_FUNCTION_G"> G
// <GPIO_PIN_FUNCTION_H"> H
// <GPIO_PIN_FUNCTION_I"> I
// <GPIO_PIN_FUNCTION_J"> J
// <GPIO_PIN_FUNCTION_K"> K
// <GPIO_PIN_FUNCTION_L"> L
// <GPIO_PIN_FUNCTION_M"> M
// <GPIO_PIN_FUNCTION_N"> N
PINMUX_PA11H_QSPI_DATA3);
// Set pin direction to input
gpio_set_pin_direction(ECAT_QSPI_SCK, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(ECAT_QSPI_SCK,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(ECAT_QSPI_SCK, PINMUX_PB10H_QSPI_SCK);
}
void QUAD_SPI_0_CLOCK_init(void)
{
hri_mclk_set_AHBMASK_QSPI_bit(MCLK);
hri_mclk_set_AHBMASK_QSPI_2X_bit(MCLK);
hri_mclk_set_APBCMASK_QSPI_bit(MCLK);
}
void QUAD_SPI_0_init(void)
{
QUAD_SPI_0_CLOCK_init();
qspi_sync_init(&QUAD_SPI_0, QSPI);
QUAD_SPI_0_PORT_init();
}
void SPI_1_PORT_init(void)
{
gpio_set_pin_level(SPI1_MOSI,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
// Set pin direction to output
gpio_set_pin_direction(SPI1_MOSI, GPIO_DIRECTION_OUT);
gpio_set_pin_function(SPI1_MOSI, PINMUX_PA00D_SERCOM1_PAD0);
gpio_set_pin_level(SPI1_SCK,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
// Set pin direction to output
gpio_set_pin_direction(SPI1_SCK, GPIO_DIRECTION_OUT);
gpio_set_pin_function(SPI1_SCK, PINMUX_PA01D_SERCOM1_PAD1);
// Set pin direction to input
gpio_set_pin_direction(SPI1_MISO, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(SPI1_MISO,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(SPI1_MISO, PINMUX_PB23C_SERCOM1_PAD3);
}
void SPI_1_CLOCK_init(void)
{
hri_gclk_write_PCHCTRL_reg(GCLK, SERCOM1_GCLK_ID_CORE, CONF_GCLK_SERCOM1_CORE_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
hri_gclk_write_PCHCTRL_reg(GCLK, SERCOM1_GCLK_ID_SLOW, CONF_GCLK_SERCOM1_SLOW_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
hri_mclk_set_APBAMASK_SERCOM1_bit(MCLK);
}
void SPI_1_init(void)
{
SPI_1_CLOCK_init();
spi_m_sync_init(&SPI_1, SERCOM1);
SPI_1_PORT_init();
}
void SPI_2_PORT_init(void)
{
gpio_set_pin_level(SPI2_MOSI,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
// Set pin direction to output
gpio_set_pin_direction(SPI2_MOSI, GPIO_DIRECTION_OUT);
gpio_set_pin_function(SPI2_MOSI, PINMUX_PA12C_SERCOM2_PAD0);
gpio_set_pin_level(SPI2_SCK,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
// Set pin direction to output
gpio_set_pin_direction(SPI2_SCK, GPIO_DIRECTION_OUT);
gpio_set_pin_function(SPI2_SCK, PINMUX_PA13C_SERCOM2_PAD1);
// Set pin direction to input
gpio_set_pin_direction(SPI2_MISO, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(SPI2_MISO,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(SPI2_MISO, PINMUX_PA15C_SERCOM2_PAD3);
}
void SPI_2_CLOCK_init(void)
{
hri_gclk_write_PCHCTRL_reg(GCLK, SERCOM2_GCLK_ID_CORE, CONF_GCLK_SERCOM2_CORE_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
hri_gclk_write_PCHCTRL_reg(GCLK, SERCOM2_GCLK_ID_SLOW, CONF_GCLK_SERCOM2_SLOW_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
hri_mclk_set_APBBMASK_SERCOM2_bit(MCLK);
}
void SPI_2_init(void)
{
SPI_2_CLOCK_init();
spi_m_async_init(&SPI_2, SERCOM2);
SPI_2_PORT_init();
}
void SPI_3_PORT_init(void)
{
gpio_set_pin_level(SPI3_MOSI,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
// Set pin direction to output
gpio_set_pin_direction(SPI3_MOSI, GPIO_DIRECTION_OUT);
gpio_set_pin_function(SPI3_MOSI, PINMUX_PB02D_SERCOM5_PAD0);
gpio_set_pin_level(SPI3_SCK,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
// Set pin direction to output
gpio_set_pin_direction(SPI3_SCK, GPIO_DIRECTION_OUT);
gpio_set_pin_function(SPI3_SCK, PINMUX_PB03D_SERCOM5_PAD1);
// Set pin direction to input
gpio_set_pin_direction(SPI3_MISO, GPIO_DIRECTION_IN);
gpio_set_pin_pull_mode(SPI3_MISO,
// <y> Pull configuration
// <id> pad_pull_config
// <GPIO_PULL_OFF"> Off
// <GPIO_PULL_UP"> Pull-up
// <GPIO_PULL_DOWN"> Pull-down
GPIO_PULL_OFF);
gpio_set_pin_function(SPI3_MISO, PINMUX_PB01D_SERCOM5_PAD3);
}
void SPI_3_CLOCK_init(void)
{
hri_gclk_write_PCHCTRL_reg(GCLK, SERCOM5_GCLK_ID_CORE, CONF_GCLK_SERCOM5_CORE_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
hri_gclk_write_PCHCTRL_reg(GCLK, SERCOM5_GCLK_ID_SLOW, CONF_GCLK_SERCOM5_SLOW_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
hri_mclk_set_APBDMASK_SERCOM5_bit(MCLK);
}
void SPI_3_init(void)
{
SPI_3_CLOCK_init();
spi_m_sync_init(&SPI_3, SERCOM5);
SPI_3_PORT_init();
}
void PWM_0_PORT_init(void)
{
gpio_set_pin_function(M1_PWMA, PINMUX_PB12G_TCC0_WO0);
gpio_set_pin_function(M1_PWMB, PINMUX_PB13G_TCC0_WO1);
gpio_set_pin_function(M1_PWMC, PINMUX_PB14G_TCC0_WO2);
gpio_set_pin_function(M1_ENA, PINMUX_PB15G_TCC0_WO3);
gpio_set_pin_function(M1_ENB, PINMUX_PB16G_TCC0_WO4);
gpio_set_pin_function(M1_ENC, PINMUX_PB17G_TCC0_WO5);
}
void PWM_0_CLOCK_init(void)
{
hri_mclk_set_APBBMASK_TCC0_bit(MCLK);
hri_gclk_write_PCHCTRL_reg(GCLK, TCC0_GCLK_ID, CONF_GCLK_TCC0_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
}
void PWM_0_init(void)
{
PWM_0_CLOCK_init();
PWM_0_PORT_init();
pwm_init(&PWM_0, TCC0, _tcc_get_pwm());
}
void PWM_1_PORT_init(void)
{
gpio_set_pin_function(M2_PWMA, PINMUX_PA16F_TCC1_WO0);
gpio_set_pin_function(M2_PWMB, PINMUX_PA17F_TCC1_WO1);
gpio_set_pin_function(M2_PWMC, PINMUX_PA18F_TCC1_WO2);
gpio_set_pin_function(M2_ENA, PINMUX_PA19F_TCC1_WO3);
gpio_set_pin_function(M2_ENB, PINMUX_PA20F_TCC1_WO4);
gpio_set_pin_function(M2_ENC, PINMUX_PA21F_TCC1_WO5);
}
void PWM_1_CLOCK_init(void)
{
hri_mclk_set_APBBMASK_TCC1_bit(MCLK);
hri_gclk_write_PCHCTRL_reg(GCLK, TCC1_GCLK_ID, CONF_GCLK_TCC1_SRC | (1 << GCLK_PCHCTRL_CHEN_Pos));
}
void PWM_1_init(void)
{
PWM_1_CLOCK_init();
PWM_1_PORT_init();
pwm_init(&PWM_1, TCC1, _tcc_get_pwm());
}
void system_init(void)
{
init_mcu();
// GPIO on PA03
// Disable digital pin circuitry
gpio_set_pin_direction(ANAREF_2V48, GPIO_DIRECTION_OFF);
gpio_set_pin_function(ANAREF_2V48, GPIO_PIN_FUNCTION_OFF);
// GPIO on PA14
gpio_set_pin_function(SPI2_SS, GPIO_PIN_FUNCTION_OFF);
// GPIO on PA25
gpio_set_pin_level(M1_RST,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
// Set pin direction to output
gpio_set_pin_direction(M1_RST, GPIO_DIRECTION_OUT);
gpio_set_pin_function(M1_RST, GPIO_PIN_FUNCTION_OFF);
// GPIO on PA27
gpio_set_pin_level(M2_RST,
// <y> Initial level
// <id> pad_initial_level
// <false"> Low
// <true"> High
false);
// Set pin direction to output
gpio_set_pin_direction(M2_RST, GPIO_DIRECTION_OUT);
gpio_set_pin_function(M2_RST, GPIO_PIN_FUNCTION_OFF);
// GPIO on PB00
gpio_set_pin_function(SPI3_SS, GPIO_PIN_FUNCTION_OFF);
// GPIO on PB08
// Disable digital pin circuitry
gpio_set_pin_direction(half_VREF, GPIO_DIRECTION_OFF);
gpio_set_pin_function(half_VREF, GPIO_PIN_FUNCTION_OFF);
// GPIO on PB22
gpio_set_pin_function(SPI1_CS, GPIO_PIN_FUNCTION_OFF);
ADC_0_init();
ADC_1_init();
DIGITAL_GLUE_LOGIC_0_init();
EXTERNAL_IRQ_0_init();
EVENT_SYSTEM_0_init();
QUAD_SPI_0_init();
SPI_1_init();
SPI_2_init();
SPI_3_init();
PWM_0_init();
PWM_1_init();
}

View File

@ -0,0 +1,106 @@
/*
* Code generated from Atmel Start.
*
* This file will be overwritten when reconfiguring your Atmel Start project.
* Please copy examples or other code you want to keep to a separate file
* to avoid losing it when reconfiguring.
*/
#ifndef DRIVER_INIT_INCLUDED
#define DRIVER_INIT_INCLUDED
#include "atmel_start_pins.h"
#ifdef __cplusplus
extern "C" {
#endif
#include <hal_atomic.h>
#include <hal_delay.h>
#include <hal_gpio.h>
#include <hal_init.h>
#include <hal_io.h>
#include <hal_sleep.h>
#include <hal_adc_sync.h>
#include <hal_adc_sync.h>
#include <hal_custom_logic.h>
#include <hal_ext_irq.h>
#include <hal_evsys.h>
#include <hal_qspi_sync.h>
#include <hal_spi_m_sync.h>
#include <hal_spi_m_async.h>
#include <hal_spi_m_sync.h>
#include <hal_pwm.h>
#include <hpl_tcc.h>
#include <hal_pwm.h>
#include <hpl_tcc.h>
extern struct adc_sync_descriptor ADC_0;
extern struct adc_sync_descriptor ADC_1;
extern struct qspi_sync_descriptor QUAD_SPI_0;
extern struct spi_m_sync_descriptor SPI_1;
extern struct spi_m_async_descriptor SPI_2;
extern struct spi_m_sync_descriptor SPI_3;
extern struct pwm_descriptor PWM_0;
extern struct pwm_descriptor PWM_1;
void ADC_0_PORT_init(void);
void ADC_0_CLOCK_init(void);
void ADC_0_init(void);
void ADC_1_PORT_init(void);
void ADC_1_CLOCK_init(void);
void ADC_1_init(void);
void DIGITAL_GLUE_LOGIC_0_PORT_init(void);
void DIGITAL_GLUE_LOGIC_0_CLOCK_init(void);
void DIGITAL_GLUE_LOGIC_0_init(void);
void QUAD_SPI_0_PORT_init(void);
void QUAD_SPI_0_CLOCK_init(void);
void QUAD_SPI_0_init(void);
void SPI_1_PORT_init(void);
void SPI_1_CLOCK_init(void);
void SPI_1_init(void);
void SPI_2_PORT_init(void);
void SPI_2_CLOCK_init(void);
void SPI_2_init(void);
void SPI_3_PORT_init(void);
void SPI_3_CLOCK_init(void);
void SPI_3_init(void);
void PWM_0_PORT_init(void);
void PWM_0_CLOCK_init(void);
void PWM_0_init(void);
void PWM_1_PORT_init(void);
void PWM_1_CLOCK_init(void);
void PWM_1_init(void);
/**
* \brief Perform system initialization, initialize pins and clocks for
* peripherals
*/
void system_init(void);
#ifdef __cplusplus
}
#endif
#endif // DRIVER_INIT_INCLUDED

View File

@ -0,0 +1,166 @@
/*
* Code generated from Atmel Start.
*
* This file will be overwritten when reconfiguring your Atmel Start project.
* Please copy examples or other code you want to keep to a separate file
* to avoid losing it when reconfiguring.
*/
#include "driver_examples.h"
#include "driver_init.h"
#include "utils.h"
/**
* Example of using ADC_0 to generate waveform.
*/
void ADC_0_example(void)
{
uint8_t buffer[2];
adc_sync_enable_channel(&ADC_0, 0);
while (1) {
adc_sync_read_channel(&ADC_0, 0, buffer, 2);
}
}
/**
* Example of using ADC_1 to generate waveform.
*/
void ADC_1_example(void)
{
uint8_t buffer[2];
adc_sync_enable_channel(&ADC_1, 0);
while (1) {
adc_sync_read_channel(&ADC_1, 0, buffer, 2);
}
}
/**
* Example of using DIGITAL_GLUE_LOGIC_0.
*/
void DIGITAL_GLUE_LOGIC_0_example(void)
{
custom_logic_enable();
/* Customer logic now works. */
}
static void button_on_PA07_pressed(void)
{
}
static void button_on_PB30_pressed(void)
{
}
static void button_on_PB31_pressed(void)
{
}
/**
* Example of using EXTERNAL_IRQ_0
*/
void EXTERNAL_IRQ_0_example(void)
{
ext_irq_register(PIN_PA07, button_on_PA07_pressed);
ext_irq_register(PIN_PB30, button_on_PB30_pressed);
ext_irq_register(PIN_PB31, button_on_PB31_pressed);
}
/**
* Example of using QUAD_SPI_0 to get N25Q256A status value,
* and check bit 0 which indicate embedded operation is busy or not.
*/
void QUAD_SPI_0_example(void)
{
uint8_t status = 0xFF;
struct _qspi_command cmd = {
.inst_frame.bits.inst_en = 1,
.inst_frame.bits.data_en = 1,
.inst_frame.bits.tfr_type = QSPI_READ_ACCESS,
.instruction = 0x05,
.buf_len = 1,
.rx_buf = &status,
};
qspi_sync_enable(&QUAD_SPI_0);
while (status & (1 << 0)) {
qspi_sync_serial_run_command(&QUAD_SPI_0, &cmd);
}
qspi_sync_deinit(&QUAD_SPI_0);
}
/**
* Example of using SPI_1 to write "Hello World" using the IO abstraction.
*/
static uint8_t example_SPI_1[12] = "Hello World!";
void SPI_1_example(void)
{
struct io_descriptor *io;
spi_m_sync_get_io_descriptor(&SPI_1, &io);
spi_m_sync_enable(&SPI_1);
io_write(io, example_SPI_1, 12);
}
/**
* Example of using SPI_2 to write "Hello World" using the IO abstraction.
*
* Since the driver is asynchronous we need to use statically allocated memory for string
* because driver initiates transfer and then returns before the transmission is completed.
*
* Once transfer has been completed the tx_cb function will be called.
*/
static uint8_t example_SPI_2[12] = "Hello World!";
static void complete_cb_SPI_2(const struct spi_m_async_descriptor *const io_descr)
{
/* Transfer completed */
}
void SPI_2_example(void)
{
struct io_descriptor *io;
spi_m_async_get_io_descriptor(&SPI_2, &io);
spi_m_async_register_callback(&SPI_2, SPI_M_ASYNC_CB_XFER, (FUNC_PTR)complete_cb_SPI_2);
spi_m_async_enable(&SPI_2);
io_write(io, example_SPI_2, 12);
}
/**
* Example of using SPI_3 to write "Hello World" using the IO abstraction.
*/
static uint8_t example_SPI_3[12] = "Hello World!";
void SPI_3_example(void)
{
struct io_descriptor *io;
spi_m_sync_get_io_descriptor(&SPI_3, &io);
spi_m_sync_enable(&SPI_3);
io_write(io, example_SPI_3, 12);
}
/**
* Example of using PWM_0.
*/
void PWM_0_example(void)
{
pwm_set_parameters(&PWM_0, 10000, 5000);
pwm_enable(&PWM_0);
}
/**
* Example of using PWM_1.
*/
void PWM_1_example(void)
{
pwm_set_parameters(&PWM_1, 10000, 5000);
pwm_enable(&PWM_1);
}

View File

@ -0,0 +1,34 @@
/*
* Code generated from Atmel Start.
*
* This file will be overwritten when reconfiguring your Atmel Start project.
* Please copy examples or other code you want to keep to a separate file
* to avoid losing it when reconfiguring.
*/
#ifndef DRIVER_EXAMPLES_H_INCLUDED
#define DRIVER_EXAMPLES_H_INCLUDED
#ifdef __cplusplus
extern "C" {
#endif
void ADC_0_example(void);
void ADC_1_example(void);
void DIGITAL_GLUE_LOGIC_0_example(void);
void EXTERNAL_IRQ_0_example(void);
void QUAD_SPI_0_example(void);
void SPI_2_example(void);
void PWM_0_example(void);
void PWM_1_example(void);
#ifdef __cplusplus
}
#endif
#endif // DRIVER_EXAMPLES_H_INCLUDED

View File

@ -0,0 +1,74 @@
======================
ADC Synchronous driver
======================
An ADC (Analog-to-Digital Converter) converts analog signals to digital values.
A reference signal with a known voltage level is quantified into equally
sized chunks, each representing a digital value from 0 to the highest number
possible with the bit resolution supported by the ADC. The input voltage
measured by the ADC is compared against these chunks and the chunk with the
closest voltage level defines the digital value that can be used to represent
the analog input voltage level.
Usually an ADC can operate in either differential or single-ended mode.
In differential mode two signals (V+ and V-) are compared against each other
and the resulting digital value represents the relative voltage level between
V+ and V-. This means that if the input voltage level on V+ is lower than on
V- the digital value is negative, which also means that in differential
mode one bit is lost to the sign. In single-ended mode only V+ is compared
against the reference voltage, and the resulting digital value can only be
positive, but the full bit-range of the ADC can be used.
Usually multiple resolutions are supported by the ADC, lower resolution can
reduce the conversion time, but lose accuracy.
Some ADCs has a gain stage on the input lines which can be used to increase the
dynamic range. The default gain value is usually x1, which means that the
conversion range is from 0V to the reference voltage.
Applications can change the gain stage, to increase or reduce the conversion
range.
The window mode allows the conversion result to be compared to a set of
predefined threshold values. Applications can use callback function to monitor
if the conversion result exceeds predefined threshold value.
Usually multiple reference voltages are supported by the ADC, both internal and
external with difference voltage levels. The reference voltage have an impact
on the accuracy, and should be selected to cover the full range of the analog
input signal and never less than the expected maximum input voltage.
There are two conversion modes supported by ADC, single shot and free running.
In single shot mode the ADC only make one conversion when triggered by the
application, in free running mode it continues to make conversion from it
is triggered until it is stopped by the application. When window monitoring,
the ADC should be set to free running mode.
Features
--------
* Initialization and de-initialization
* Support multiple Conversion Mode, Single or Free run
* Start ADC Conversion
* Read Conversion Result
Applications
------------
* Measurement of internal sensor. E.g., MCU internal temperature sensor value.
* Measurement of external sensor. E.g., Temperature, humidity sensor value.
* Sampling and measurement of a signal. E.g., sinusoidal wave, square wave.
Dependencies
------------
* ADC hardware
Concurrency
-----------
N/A
Limitations
-----------
N/A
Knows issues and workarounds
----------------------------
N/A

View File

@ -0,0 +1,32 @@
===========================================================
Digital Glue Logic based on Configurable Custom Logic (CCL)
===========================================================
Custom logic driver offers a way to initialize on-chip programmable logic
units, so that a specific logic box is built. Then this "box" can be connected
to internal or external circuit to perform the logic operations.
Features
--------
* Initialization and de-initialization
* Enabling and disabling
Applications
------------
* Connected to external circuit, as a logic operation box, e.g., as adder.
Dependencies
------------
* Programmable logic control units
Concurrency
-----------
N/A
Limitations
-----------
N/A
Knows issues and workarounds
----------------------------
N/A

View File

@ -0,0 +1,39 @@
==============
EXT IRQ driver
==============
The External Interrupt driver allows external pins to be
configured as interrupt lines. Each interrupt line can be
individually masked and can generate an interrupt on rising,
falling or both edges, or on high or low levels. Some of
external pin can also be configured to wake up the device
from sleep modes where all clocks have been disabled.
External pins can also generate an event.
Features
--------
* Initialization and de-initialization
* Enabling and disabling
* Detect external pins interrupt
Applications
------------
* Generate an interrupt on rising, falling or both edges,
or on high or low levels.
Dependencies
------------
* GPIO hardware
Concurrency
-----------
N/A
Limitations
-----------
N/A
Knows issues and workarounds
----------------------------
N/A

View File

@ -0,0 +1,53 @@
The PWM Driver(bare-bone)
=========================
Pulse-width modulation (PWM) is used to create an analog behavior
digitally by controlling the amount of power transferred to the
connected peripheral. This is achieved by controlling the high period
(duty-cycle) of a periodic signal.
User can change the period or duty cycle whenever PWM is running. The
function pwm_set_parameters is used to configure these two parameters.
Note these are raw register values and the parameter duty_cycle means
the period of first half during one cycle, which should be not beyond
total period value.
In addition, user can also get multi PWM channels output from different
peripherals at the same time, which is implemented more flexible by the
function pointers.
Features
--------
* Initialization/de-initialization
* Enabling/disabling
* Run-time control of PWM duty-cycle and period
* Notifications about errors and one PWM cycle is done
Applications
------------
Motor control, ballast, LED, H-bridge, power converters, and
other types of power control applications.
Dependencies
------------
The peripheral which can perform waveform generation like frequency
generation and pulse-width modulation, such as Timer/Counter.
Concurrency
-----------
N/A
Limitations
-----------
The current driver doesn't support the features like recoverable,
non-recoverable faults, dithering, dead-time insertion.
Known issues and workarounds
----------------------------
N/A

View File

@ -0,0 +1,43 @@
The Quad SPI Synchronous Driver
=================================
The Quad SPI Interface (QSPI) is a synchronous serial data link that provides
communication with external devices in master mode.
The driver can be used for SPI serial memory middleware which support flash
earse, program and read.
Features
--------
* Initialization/de-initialization
* Enabling/disabling
* Execute command in Serial Memory Mode
Applications
------------
They are commonly used in an application for using serial flash memory operating
in single-bit SPI, Dual SPI and Quad SPI.
Dependencies
------------
Serial NOR flash with Multiple I/O hardware
Concurrency
-----------
N/A
Limitations
-----------
N.A
Known issues and workarounds
----------------------------
N/A

View File

@ -0,0 +1,55 @@
The SPI Master Asynchronous Driver
==================================
The serial peripheral interface (SPI) is a synchronous serial communication
interface.
SPI devices communicate in full duplex mode using a master-slave
architecture with a single master. The master device originates the frame for
reading and writing. Multiple slave devices are supported through selection
with individual slave select (SS) lines.
Features
--------
* Initialization/de-initialization
* Enabling/disabling
* Control of the following settings:
* Baudrate
* SPI mode
* Character size
* Data order
* Data transfer: transmission, reception and full-duplex
* Notifications about transfer completion and errors via callbacks
* Status information with busy state and transfer count
Applications
------------
Send/receive/exchange data with a SPI slave device. E.g., serial flash, SD card,
LCD controller, etc.
Dependencies
------------
SPI master capable hardware, with interrupt on each character sent/received.
Concurrency
-----------
N/A
Limitations
-----------
The slave select (SS) is not automatically inserted during read/write/transfer,
user must use I/O to control the devices' SS.
While read/write/transfer is in progress, the data buffer used must be kept
unchanged.
Known issues and workarounds
----------------------------
N/A

View File

@ -0,0 +1,51 @@
The SPI Master Synchronous Driver
=================================
The serial peripheral interface (SPI) is a synchronous serial communication
interface.
SPI devices communicate in full duplex mode using a master-slave
architecture with a single master. The master device originates the frame for
reading and writing. Multiple slave devices are supported through selection
with individual slave select (SS) lines.
Features
--------
* Initialization/de-initialization
* Enabling/disabling
* Control of the following settings:
* Baudrate
* SPI mode
* Character size
* Data order
* Data transfer: transmission, reception and full-duplex
Applications
------------
Send/receive/exchange data with a SPI slave device. E.g., serial flash, SD card,
LCD controller, etc.
Dependencies
------------
SPI master capable hardware
Concurrency
-----------
N/A
Limitations
-----------
The slave select (SS) is not automatically inserted during read/write/transfer,
user must use I/O to control the devices' SS.
Known issues and workarounds
----------------------------
N/A

View File

@ -0,0 +1,277 @@
/**
* \file
*
* \brief ADC functionality declaration.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HAL_ADC_SYNC_H_INCLUDED
#define _HAL_ADC_SYNC_H_INCLUDED
#include <hpl_adc_sync.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \addtogroup doc_driver_hal_adc_sync
*
* @{
*/
/**
* \brief ADC descriptor
*
* The ADC descriptor forward declaration.
*/
struct adc_sync_descriptor;
/**
* \brief ADC descriptor
*/
struct adc_sync_descriptor {
/** ADC device */
struct _adc_sync_device device;
};
/**
* \brief Initialize ADC
*
* This function initializes the given ADC descriptor.
* It checks if the given hardware is not initialized and if the given hardware
* is permitted to be initialized.
*
* \param[out] descr An ADC descriptor to initialize
* \param[in] hw The pointer to hardware instance
* \param[in] func The pointer to a set of functions pointers
*
* \return Initialization status.
*/
int32_t adc_sync_init(struct adc_sync_descriptor *const descr, void *const hw, void *const func);
/**
* \brief Deinitialize ADC
*
* This function deinitializes the given ADC descriptor.
* It checks if the given hardware is initialized and if the given hardware is
* permitted to be deinitialized.
*
* \param[in] descr An ADC descriptor to deinitialize
*
* \return De-initialization status.
*/
int32_t adc_sync_deinit(struct adc_sync_descriptor *const descr);
/**
* \brief Enable ADC
*
* Use this function to set the ADC peripheral to enabled state.
*
* \param[in] descr Pointer to the ADC descriptor
* \param[in] channel Channel number
*
* \return Operation status
*
*/
int32_t adc_sync_enable_channel(struct adc_sync_descriptor *const descr, const uint8_t channel);
/**
* \brief Disable ADC
*
* Use this function to set the ADC peripheral to disabled state.
*
* \param[in] descr Pointer to the ADC descriptor
* \param[in] channel Channel number
*
* \return Operation status
*
*/
int32_t adc_sync_disable_channel(struct adc_sync_descriptor *const descr, const uint8_t channel);
/**
* \brief Read data from ADC
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] channel Channel number
* \param[in] buf A buffer to read data to
* \param[in] length The size of a buffer
*
* \return The number of bytes read.
*/
int32_t adc_sync_read_channel(struct adc_sync_descriptor *const descr, const uint8_t channel, uint8_t *const buffer,
const uint16_t length);
/**
* \brief Set ADC reference source
*
* This function sets ADC reference source.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] reference A reference source to set
*
* \return Status of the ADC reference source setting.
*/
int32_t adc_sync_set_reference(struct adc_sync_descriptor *const descr, const adc_reference_t reference);
/**
* \brief Set ADC resolution
*
* This function sets ADC resolution.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] resolution A resolution to set
*
* \return Status of the ADC resolution setting.
*/
int32_t adc_sync_set_resolution(struct adc_sync_descriptor *const descr, const adc_resolution_t resolution);
/**
* \brief Set ADC input source of a channel
*
* This function sets ADC positive and negative input sources.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] pos_input A positive input source to set
* \param[in] neg_input A negative input source to set
* \param[in] channel Channel number
*
* \return Status of the ADC channels setting.
*/
int32_t adc_sync_set_inputs(struct adc_sync_descriptor *const descr, const adc_pos_input_t pos_input,
const adc_neg_input_t neg_input, const uint8_t channel);
/**
* \brief Set ADC conversion mode
*
* This function sets ADC conversion mode.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] mode A conversion mode to set
*
* \return Status of the ADC conversion mode setting.
*/
int32_t adc_sync_set_conversion_mode(struct adc_sync_descriptor *const descr, const enum adc_conversion_mode mode);
/**
* \brief Set ADC differential mode
*
* This function sets ADC differential mode.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] channel Channel number
* \param[in] mode A differential mode to set
*
* \return Status of the ADC differential mode setting.
*/
int32_t adc_sync_set_channel_differential_mode(struct adc_sync_descriptor *const descr, const uint8_t channel,
const enum adc_differential_mode mode);
/**
* \brief Set ADC channel gain
*
* This function sets ADC channel gain.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] channel Channel number
* \param[in] gain A gain to set
*
* \return Status of the ADC gain setting.
*/
int32_t adc_sync_set_channel_gain(struct adc_sync_descriptor *const descr, const uint8_t channel,
const adc_gain_t gain);
/**
* \brief Set ADC window mode
*
* This function sets ADC window mode.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] mode A window mode to set
*
* \return Status of the ADC window mode setting.
*/
int32_t adc_sync_set_window_mode(struct adc_sync_descriptor *const descr, const adc_window_mode_t mode);
/**
* \brief Set ADC thresholds
*
* This function sets ADC positive and negative thresholds.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] low_threshold A lower thresholds to set
* \param[in] up_threshold An upper thresholds to set
*
* \return Status of the ADC thresholds setting.
*/
int32_t adc_sync_set_thresholds(struct adc_sync_descriptor *const descr, const adc_threshold_t low_threshold,
const adc_threshold_t up_threshold);
/**
* \brief Retrieve threshold state
*
* This function retrieves ADC threshold state.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[out] state The threshold state
*
* \return The state of ADC thresholds state retrieving.
*/
int32_t adc_sync_get_threshold_state(const struct adc_sync_descriptor *const descr,
adc_threshold_status_t *const state);
/**
* \brief Check if conversion is complete
*
* This function checks if the ADC has finished the conversion.
*
* \param[in] descr The pointer to the ADC descriptor
* \param[in] channel Channel number
*
* \return The status of ADC conversion completion checking.
* \retval 1 The conversion is complete
* \retval 0 The conversion is not complete
*/
int32_t adc_sync_is_channel_conversion_complete(const struct adc_sync_descriptor *const descr, const uint8_t channel);
/**
* \brief Retrieve the current driver version
*
* \return Current driver version.
*/
uint32_t adc_sync_get_version(void);
/**@}*/
#ifdef __cplusplus
}
#endif
#include <hpl_missing_features.h>
#endif /* _HAL_ADC_SYNC_H_INCLUDED */

View File

@ -0,0 +1,89 @@
/**
* \file
*
* \brief Custom Control Logic functionality declaration.
*
* Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include "hpl_custom_logic.h"
#ifndef _HAL_CUSTOM_LOGIC_H_INCLUDED
#define _HAL_CUSTOM_LOGIC_H_INCLUDED
#ifdef __cplusplus
extern "C" {
#endif
/**
* \addtogroup doc_driver_hal_custom_logic
*
*@{
*/
/**
* \brief Initialize the custom logic hardware
* \return Initialization operation status
*/
static inline int32_t custom_logic_init(void)
{
return _custom_logic_init();
}
/**
* \brief Disable and reset the custom logic hardware
*/
static inline void custom_logic_deinit(void)
{
_custom_logic_deinit();
}
/**
* \brief Enable the custom logic hardware
* \return Initialization operation status
*/
static inline int32_t custom_logic_enable(void)
{
return _custom_logic_enable();
}
/**
* \brief Disable the custom logic hardware
*/
static inline void custom_logic_disable(void)
{
_custom_logic_disable();
}
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* _HAL_CUSTOM_LOGIC_H_INCLUDED */

View File

@ -0,0 +1,118 @@
/**
* \file
*
* \brief External interrupt functionality declaration.
*
* Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HAL_EXT_IRQ_H_INCLUDED
#define _HAL_EXT_IRQ_H_INCLUDED
#include <hpl_ext_irq.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \addtogroup doc_driver_hal_ext_irq
*
* @{
*/
/**
* \brief External IRQ callback type
*/
typedef void (*ext_irq_cb_t)(void);
/**
* \brief Initialize external IRQ component, if any
*
* \return Initialization status.
* \retval -1 External IRQ module is already initialized
* \retval 0 The initialization is completed successfully
*/
int32_t ext_irq_init(void);
/**
* \brief Deinitialize external IRQ, if any
*
* \return De-initialization status.
* \retval -1 External IRQ module is already deinitialized
* \retval 0 The de-initialization is completed successfully
*/
int32_t ext_irq_deinit(void);
/**
* \brief Register callback for the given external interrupt
*
* \param[in] pin Pin to enable external IRQ on
* \param[in] cb Callback function
*
* \return Registration status.
* \retval -1 Passed parameters were invalid
* \retval 0 The callback registration is completed successfully
*/
int32_t ext_irq_register(const uint32_t pin, ext_irq_cb_t cb);
/**
* \brief Enable external IRQ
*
* \param[in] pin Pin to enable external IRQ on
*
* \return Enabling status.
* \retval -1 Passed parameters were invalid
* \retval 0 The enabling is completed successfully
*/
int32_t ext_irq_enable(const uint32_t pin);
/**
* \brief Disable external IRQ
*
* \param[in] pin Pin to enable external IRQ on
*
* \return Disabling status.
* \retval -1 Passed parameters were invalid
* \retval 0 The disabling is completed successfully
*/
int32_t ext_irq_disable(const uint32_t pin);
/**
* \brief Retrieve the current driver version
*
* \return Current driver version.
*/
uint32_t ext_irq_get_version(void);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* _HAL_EXT_IRQ_H_INCLUDED */

View File

@ -0,0 +1,151 @@
/**
* \file
*
* \brief PWM functionality declaration.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef HAL_PWM_H_INCLUDED
#define HAL_PWM_H_INCLUDED
#include <hpl_pwm.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \addtogroup doc_driver_hal_pwm_async
*
*@{
*/
/**
* \brief PWM descriptor
*
* The PWM descriptor forward declaration.
*/
struct pwm_descriptor;
/**
* \brief PWM callback type
*/
typedef void (*pwm_cb_t)(const struct pwm_descriptor *const descr);
/**
* \brief PWM callback types
*/
enum pwm_callback_type { PWM_PERIOD_CB, PWM_ERROR_CB };
/**
* \brief PWM callbacks
*/
struct pwm_callbacks {
pwm_cb_t period;
pwm_cb_t error;
};
/** \brief PWM descriptor
*/
struct pwm_descriptor {
/** PWM device */
struct _pwm_device device;
/** PWM callback structure */
struct pwm_callbacks pwm_cb;
};
/** \brief Initialize the PWM HAL instance and hardware
*
* \param[in] descr Pointer to the HAL PWM descriptor
* \param[in] hw The pointer to hardware instance
* \param[in] func The pointer to a set of functions pointers
*
* \return Operation status.
*/
int32_t pwm_init(struct pwm_descriptor *const descr, void *const hw, struct _pwm_hpl_interface *const func);
/** \brief Deinitialize the PWM HAL instance and hardware
*
* \param[in] descr Pointer to the HAL PWM descriptor
*
* \return Operation status.
*/
int32_t pwm_deinit(struct pwm_descriptor *const descr);
/** \brief PWM output start
*
* \param[in] descr Pointer to the HAL PWM descriptor
*
* \return Operation status.
*/
int32_t pwm_enable(struct pwm_descriptor *const descr);
/** \brief PWM output stop
*
* \param[in] descr Pointer to the HAL PWM descriptor
*
* \return Operation status.
*/
int32_t pwm_disable(struct pwm_descriptor *const descr);
/** \brief Register PWM callback
*
* \param[in] descr Pointer to the HAL PWM descriptor
* \param[in] type Callback type
* \param[in] cb A callback function, passing NULL de-registers callback
*
* \return Operation status.
* \retval 0 Success
* \retval -1 Error
*/
int32_t pwm_register_callback(struct pwm_descriptor *const descr, enum pwm_callback_type type, pwm_cb_t cb);
/** \brief Change PWM parameter
*
* \param[in] descr Pointer to the HAL PWM descriptor
* \param[in] period Total period of one PWM cycle
* \param[in] duty_cycle Period of PWM first half during one cycle
*
* \return Operation status.
*/
int32_t pwm_set_parameters(struct pwm_descriptor *const descr, const pwm_period_t period,
const pwm_period_t duty_cycle);
/** \brief Get PWM driver version
*
* \return Current driver version.
*/
uint32_t pwm_get_version(void);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* HAL_PWM;_H_INCLUDED */

View File

@ -0,0 +1,122 @@
/**
* \file
*
* \brief Quad QSPI related functionality declaration.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HAL_QSPI_INCLUDED
#define _HAL_QSPI_INCLUDED
#include <hpl_qspi_sync.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \addtogroup doc_driver_hal_quad_spi_sync
*
*@{
*/
/**
* \brief QSPI descriptor structure
*/
struct qspi_sync_descriptor {
struct _qspi_sync_dev dev;
};
/**
* \brief Initialize QSPI low level driver.
*
* \param[in] qspi Pointer to the QSPI device instance
* \param[in] hw Pointer to the hardware base
*
* \return Operation status.
* \retval ERR_NONE Success
*/
int32_t qspi_sync_init(struct qspi_sync_descriptor *qspi, void *hw);
/**
* \brief Deinitialize QSPI low level driver.
*
* \param[in] qspi Pointer to the QSPI device instance
*
* \return Operation status.
* \retval ERR_NONE Success
*/
int32_t qspi_sync_deinit(struct qspi_sync_descriptor *qspi);
/**
* \brief Enable QSPI for access without interrupts
*
* \param[in] qspi Pointer to the QSPI device instance
*
* \return Operation status.
* \retval ERR_NONE Success
*/
int32_t qspi_sync_enable(struct qspi_sync_descriptor *qspi);
/**
* \brief Disable QSPI for access without interrupts
*
* Disable QSPI. Deactivate all CS pins if it works as master.
*
* \param[in] qspi Pointer to the QSPI device instance
*
* \return Operation status.
* \retval ERR_NONE Success
*/
int32_t qspi_sync_disable(struct qspi_sync_descriptor *qspi);
/** \brief Execute command in Serial Memory Mode.
*
* \param[in] qspi Pointer to the HAL QSPI instance
* \param[in] cmd Pointer to the command structure
*
* \return Operation status.
* \retval ERR_NONE Success
*/
int32_t qspi_sync_serial_run_command(struct qspi_sync_descriptor *qspi, const struct _qspi_command *cmd);
/**
* \brief Retrieve the current driver version
*
* \return Current driver version.
*/
uint32_t qspi_sync_get_version(void);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* _HAL_QSPI_INCLUDED */

View File

@ -0,0 +1,334 @@
/**
* \file
*
* \brief SPI related functionality declaration.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HAL_SPI_M_ASYNC_H_INCLUDED
#define _HAL_SPI_M_ASYNC_H_INCLUDED
#include <hal_io.h>
#include <hpl_spi_m_async.h>
/**
* \addtogroup doc_driver_hal_spi_master_async
*
* @{
*/
#ifdef __cplusplus
extern "C" {
#endif
/** \brief SPI status
*
* Status descriptor holds the current status of transfer.
*
* \c txcnt and \c rxcnt are always the status of progress in current TX/RX
* transfer buffer.
*
* For R/W/Transfer, simply check \c SPI_M_ASYNC_STATUS_BUSY to know that the
* transfer is in progress, check \c SPI_M_ASYNC_STATUS_TX_DONE and
* \c SPI_M_ASYNC_STATUS_RX_DONE to know that TX or RX is completed (since TX
* and RX happen in different clock edge the time stamp of completion is
* different), check \c SPI_M_ASYNC_STATUS_COMPLETE to confirm that CS has been
* deactivate.
*/
struct spi_m_async_status {
/** Status flags */
uint32_t flags;
/** Number of characters transmitted */
uint32_t xfercnt;
};
/** SPI is busy (read/write/transfer, with CS activated) */
#define SPI_M_ASYNC_STATUS_BUSY 0x0010
/** SPI finished transmit buffer */
#define SPI_M_ASYNC_STATUS_TX_DONE 0x0020
/** SPI finished receive buffer */
#define SPI_M_ASYNC_STATUS_RX_DONE 0x0040
/** SPI finished everything including CS deactivate */
#define SPI_M_ASYNC_STATUS_COMPLETE 0x0080
#define SPI_M_ASYNC_STATUS_ERR_MASK 0x000F
#define SPI_M_ASYNC_STATUS_ERR_POS 0
#define SPI_M_ASYNC_STATUS_ERR_OVRF ((-ERR_OVERFLOW) << SPI_M_ASYNC_STATUS_ERR_POS)
#define SPI_M_ASYNC_STATUS_ERR_ABORT ((-ERR_ABORTED) << SPI_M_ASYNC_STATUS_ERR_POS)
#define SPI_M_ASYNC_STATUS_ERR_EXTRACT(st) (((st) >> SPI_M_ASYNC_STATUS_ERR_POS) & SPI_M_ASYNC_STATUS_ERR_MASK)
/* Forward declaration of spi_descriptor. */
struct spi_m_async_descriptor;
/** The callback types */
enum spi_m_async_cb_type {
/** Callback type for read/write/transfer buffer done,
* see \ref spi_m_async_cb_xfer_t. */
SPI_M_ASYNC_CB_XFER,
/** Callback type for CS deactivate, error, or abort,
* see \ref spi_m_async_cb_error_t. */
SPI_M_ASYNC_CB_ERROR,
SPI_M_ASYNC_CB_N
};
/** \brief Prototype of callback on SPI transfer errors
*
* Invoked on transfer errors
* invoke \ref spi_get_status.
*/
typedef void (*spi_m_async_cb_error_t)(struct spi_m_async_descriptor *, const int32_t status);
/** \brief Prototype of callback on SPI read/write/transfer buffer completion
*
* Invoked on transfer completion, which means the transfer buffer has been
* completed, including all TX/RX data (TX and RX happen in different clock
* edges, but the callback is invoked after all TX and RX have been done).
*/
typedef void (*spi_m_async_cb_xfer_t)(struct spi_m_async_descriptor *);
/** \brief SPI HAL callbacks
*
*/
struct spi_m_callbacks {
/** Callback invoked when the buffer read/write/transfer done. */
spi_m_async_cb_xfer_t cb_xfer;
/** Callback invoked when the CS deactivates, goes wrong, or aborts. */
spi_m_async_cb_error_t cb_error;
};
/** \brief SPI HAL driver struct for asynchronous access
*/
struct spi_m_async_descriptor {
struct _spi_m_async_hpl_interface *func;
/** Pointer to the SPI device instance */
struct _spi_m_async_dev dev;
/** I/O read/write */
struct io_descriptor io;
/** SPI transfer status */
uint8_t stat;
/** Callbacks for asynchronous transfer */
struct spi_m_callbacks callbacks;
/** Transfer information copy, for R/W/Transfer */
struct spi_xfer xfer;
/** Character count in current transfer */
uint32_t xfercnt;
};
/** \brief Set the SPI HAL instance function pointer for HPL APIs.
*
* Set SPI HAL instance function pointer for HPL APIs.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] func Pointer to the HPL api structure.
*
*/
void spi_m_async_set_func_ptr(struct spi_m_async_descriptor *spi, void *const func);
/** \brief Initialize the SPI HAL instance and hardware for callback mode
*
* Initialize SPI HAL with interrupt mode (uses callbacks).
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] hw Pointer to the hardware base.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_INVALID_DATA Error, initialized.
*/
int32_t spi_m_async_init(struct spi_m_async_descriptor *spi, void *const hw);
/** \brief Deinitialize the SPI HAL instance
*
* Abort transfer, disable and reset SPI, de-init software.
*
* \param[in] spi Pointer to the HAL SPI instance.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval <0 Error code.
*/
void spi_m_async_deinit(struct spi_m_async_descriptor *spi);
/** \brief Enable SPI
*
* \param[in] spi Pointer to the HAL SPI instance.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval <0 Error code.
*/
void spi_m_async_enable(struct spi_m_async_descriptor *spi);
/** \brief Disable the SPI and abort any pending transfer in progress
*
* If there is any pending transfer, the complete callback is invoked
* with the \c ERR_ABORTED status.
*
* \param[in] spi Pointer to the HAL SPI instance.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval <0 Error code.
*/
void spi_m_async_disable(struct spi_m_async_descriptor *spi);
/** \brief Set SPI baudrate
*
* Works if the SPI is initialized as master.
* In the function a sanity check is used to confirm it's called in the correct mode.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] baud_val The target baudrate value
* (see "baudrate calculation" for calculating the value).
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy.
*/
int32_t spi_m_async_set_baudrate(struct spi_m_async_descriptor *spi, const uint32_t baud_val);
/** \brief Set SPI mode
*
* Set the SPI transfer mode (\ref spi_transfer_mode),
* which controls the clock polarity and clock phase:
* - Mode 0: leading edge is rising edge, data sample on leading edge.
* - Mode 1: leading edge is rising edge, data sample on trailing edge.
* - Mode 2: leading edge is falling edge, data sample on leading edge.
* - Mode 3: leading edge is falling edge, data sample on trailing edge.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] mode The mode (\ref spi_transfer_mode).
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy, CS activated.
*/
int32_t spi_m_async_set_mode(struct spi_m_async_descriptor *spi, const enum spi_transfer_mode mode);
/** \brief Set SPI transfer character size in number of bits
*
* The character size (\ref spi_char_size) influence the way the data is
* sent/received.
* For char size <= 8-bit, data is stored byte by byte.
* For char size between 9-bit ~ 16-bit, data is stored in 2-byte length.
* Note that the default and recommended char size is 8-bit since it's
* supported by all system.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] char_size The char size (\ref spi_char_size).
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy, CS activated.
* \retval ERR_INVALID_ARG The char size is not supported.
*/
int32_t spi_m_async_set_char_size(struct spi_m_async_descriptor *spi, const enum spi_char_size char_size);
/** \brief Set SPI transfer data order
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] dord The data order: send LSB/MSB first.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy, CS activated.
* \retval ERR_INVALID The data order is not supported.
*/
int32_t spi_m_async_set_data_order(struct spi_m_async_descriptor *spi, const enum spi_data_order dord);
/** \brief Perform the SPI data transfer (TX and RX) asynchronously
*
* Log the TX and RX buffers and transfer them in the background. It never blocks.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] txbuf Pointer to the transfer information (\ref spi_transfer).
* \param[out] rxbuf Pointer to the receiver information (\ref spi_receive).
* \param[in] length SPI transfer data length.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy.
*/
int32_t spi_m_async_transfer(struct spi_m_async_descriptor *spi, uint8_t const *txbuf, uint8_t *const rxbuf,
const uint16_t length);
/** \brief Get the SPI transfer status
*
* Get transfer status, transfer counts in a structured way.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[out] stat Pointer to the detailed status descriptor, set to NULL
* to not return details.
*
* \return Status.
* \retval ERR_NONE Not busy.
* \retval ERR_BUSY Busy.
*/
int32_t spi_m_async_get_status(struct spi_m_async_descriptor *spi, struct spi_m_async_status *stat);
/** \brief Register a function as SPI transfer completion callback
*
* Register callback function specified by its \c type.
* - SPI_CB_COMPLETE: set the function that will be called on the SPI transfer
* completion including deactivating the CS.
* - SPI_CB_XFER: set the function that will be called on the SPI buffer transfer
* completion.
* Register NULL function to not use the callback.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] type Callback type (\ref spi_m_async_cb_type).
* \param[in] func Pointer to callback function.
*/
void spi_m_async_register_callback(struct spi_m_async_descriptor *spi, const enum spi_m_async_cb_type type,
FUNC_PTR func);
/**
* \brief Return I/O descriptor for this SPI instance
*
* This function will return an I/O instance for this SPI driver instance
*
* \param[in] spi An SPI master descriptor, which is used to communicate through
* SPI
* \param[in, out] io A pointer to an I/O descriptor pointer type
*
* \retval ERR_NONE
*/
int32_t spi_m_async_get_io_descriptor(struct spi_m_async_descriptor *const spi, struct io_descriptor **io);
/** \brief Retrieve the current driver version
*
* \return Current driver version.
*/
uint32_t spi_m_async_get_version(void);
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* ifndef _HAL_SPI_M_ASYNC_H_INCLUDED */

View File

@ -0,0 +1,221 @@
/**
* \file
*
* \brief SPI related functionality declaration.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HAL_SPI_M_SYNC_H_INCLUDED
#define _HAL_SPI_M_SYNC_H_INCLUDED
#include <hal_io.h>
#include <hpl_spi_m_sync.h>
/**
* \addtogroup doc_driver_hal_spi_master_sync
*
* @{
*/
#ifdef __cplusplus
extern "C" {
#endif
/** \brief SPI HAL driver struct for polling mode
*
*/
struct spi_m_sync_descriptor {
struct _spi_m_sync_hpl_interface *func;
/** SPI device instance */
struct _spi_sync_dev dev;
/** I/O read/write */
struct io_descriptor io;
/** Flags for HAL driver */
uint16_t flags;
};
/** \brief Set the SPI HAL instance function pointer for HPL APIs.
*
* Set SPI HAL instance function pointer for HPL APIs.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] func Pointer to the HPL api structure.
*
*/
void spi_m_sync_set_func_ptr(struct spi_m_sync_descriptor *spi, void *const func);
/** \brief Initialize SPI HAL instance and hardware for polling mode
*
* Initialize SPI HAL with polling mode.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] hw Pointer to the hardware base.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_INVALID_DATA Error, initialized.
*/
int32_t spi_m_sync_init(struct spi_m_sync_descriptor *spi, void *const hw);
/** \brief Deinitialize the SPI HAL instance and hardware
*
* Abort transfer, disable and reset SPI, deinit software.
*
* \param[in] spi Pointer to the HAL SPI instance.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval <0 Error code.
*/
void spi_m_sync_deinit(struct spi_m_sync_descriptor *spi);
/** \brief Enable SPI
*
* \param[in] spi Pointer to the HAL SPI instance.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval <0 Error code.
*/
void spi_m_sync_enable(struct spi_m_sync_descriptor *spi);
/** \brief Disable SPI
*
* \param[in] spi Pointer to the HAL SPI instance.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval <0 Error code.
*/
void spi_m_sync_disable(struct spi_m_sync_descriptor *spi);
/** \brief Set SPI baudrate
*
* Works if SPI is initialized as master, it sets the baudrate.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] baud_val The target baudrate value
* (see "baudrate calculation" for calculating the value).
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy
* \retval ERR_INVALID_ARG The baudrate is not supported.
*/
int32_t spi_m_sync_set_baudrate(struct spi_m_sync_descriptor *spi, const uint32_t baud_val);
/** \brief Set SPI mode
*
* Set the SPI transfer mode (\ref spi_transfer_mode),
* which controls the clock polarity and clock phase:
* - Mode 0: leading edge is rising edge, data sample on leading edge.
* - Mode 1: leading edge is rising edge, data sample on trailing edge.
* - Mode 2: leading edge is falling edge, data sample on leading edge.
* - Mode 3: leading edge is falling edge, data sample on trailing edge.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] mode The mode (0~3).
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy
* \retval ERR_INVALID_ARG The mode is not supported.
*/
int32_t spi_m_sync_set_mode(struct spi_m_sync_descriptor *spi, const enum spi_transfer_mode mode);
/** \brief Set SPI transfer character size in number of bits
*
* The character size (\ref spi_char_size) influence the way the data is
* sent/received.
* For char size <= 8-bit, data is stored byte by byte.
* For char size between 9-bit ~ 16-bit, data is stored in 2-byte length.
* Note that the default and recommended char size is 8-bit since it's
* supported by all system.
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] char_size The char size (~16, recommended 8).
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy
* \retval ERR_INVALID_ARG The char size is not supported.
*/
int32_t spi_m_sync_set_char_size(struct spi_m_sync_descriptor *spi, const enum spi_char_size char_size);
/** \brief Set SPI transfer data order
*
* \param[in] spi Pointer to the HAL SPI instance.
* \param[in] dord The data order: send LSB/MSB first.
*
* \return Operation status.
* \retval ERR_NONE Success.
* \retval ERR_BUSY Busy
* \retval ERR_INVALID_ARG The data order is not supported.
*/
int32_t spi_m_sync_set_data_order(struct spi_m_sync_descriptor *spi, const enum spi_data_order dord);
/** \brief Perform the SPI data transfer (TX and RX) in polling way
*
* Activate CS, do TX and RX and deactivate CS. It blocks.
*
* \param[in, out] spi Pointer to the HAL SPI instance.
* \param[in] xfer Pointer to the transfer information (\ref spi_xfer).
*
* \retval size Success.
* \retval >=0 Timeout, with number of characters transferred.
* \retval ERR_BUSY SPI is busy
*/
int32_t spi_m_sync_transfer(struct spi_m_sync_descriptor *spi, const struct spi_xfer *xfer);
/**
* \brief Return the I/O descriptor for this SPI instance
*
* This function will return an I/O instance for this SPI driver instance.
*
* \param[in] spi An SPI master descriptor, which is used to communicate through
* SPI
* \param[in, out] io A pointer to an I/O descriptor pointer type
*
* \retval ERR_NONE
*/
int32_t spi_m_sync_get_io_descriptor(struct spi_m_sync_descriptor *const spi, struct io_descriptor **io);
/** \brief Retrieve the current driver version
*
* \return Current driver version.
*/
uint32_t spi_m_sync_get_version(void);
/**@}*/
#ifdef __cplusplus
}
#endif
#endif /* ifndef _HAL_SPI_M_SYNC_H_INCLUDED */

View File

@ -0,0 +1,264 @@
/**
* \file
*
* \brief ADC related functionality declaration.
*
* Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_ADC_ASYNC_H_INCLUDED
#define _HPL_ADC_ASYNC_H_INCLUDED
/**
* \addtogroup HPL ADC
*
* \section hpl_async_adc_rev Revision History
* - v1.0.0 Initial Release
*
*@{
*/
#include "hpl_adc_sync.h"
#include "hpl_irq.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief ADC device structure
*
* The ADC device structure forward declaration.
*/
struct _adc_async_device;
/**
* \brief ADC callback types
*/
enum _adc_async_callback_type { ADC_ASYNC_DEVICE_CONVERT_CB, ADC_ASYNC_DEVICE_MONITOR_CB, ADC_ASYNC_DEVICE_ERROR_CB };
/**
* \brief ADC interrupt callbacks
*/
struct _adc_async_callbacks {
void (*window_cb)(struct _adc_async_device *device, const uint8_t channel);
void (*error_cb)(struct _adc_async_device *device, const uint8_t channel);
};
/**
* \brief ADC channel interrupt callbacks
*/
struct _adc_async_ch_callbacks {
void (*convert_done)(struct _adc_async_device *device, const uint8_t channel, const uint16_t data);
};
/**
* \brief ADC descriptor device structure
*/
struct _adc_async_device {
struct _adc_async_callbacks adc_async_cb;
struct _adc_async_ch_callbacks adc_async_ch_cb;
struct _irq_descriptor irq;
void * hw;
};
/**
* \name HPL functions
*/
//@{
/**
* \brief Initialize synchronous ADC
*
* This function does low level ADC configuration.
*
* param[in] device The pointer to ADC device instance
* param[in] hw The pointer to hardware instance
*
* \return Initialization status
*/
int32_t _adc_async_init(struct _adc_async_device *const device, void *const hw);
/**
* \brief Deinitialize ADC
*
* \param[in] device The pointer to ADC device instance
*/
void _adc_async_deinit(struct _adc_async_device *const device);
/**
* \brief Enable ADC peripheral
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*/
void _adc_async_enable_channel(struct _adc_async_device *const device, const uint8_t channel);
/**
* \brief Disable ADC peripheral
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*/
void _adc_async_disable_channel(struct _adc_async_device *const device, const uint8_t channel);
/**
* \brief Retrieve ADC conversion data size
*
* \param[in] device The pointer to ADC device instance
*
* \return The data size in bytes
*/
uint8_t _adc_async_get_data_size(const struct _adc_async_device *const device);
/**
* \brief Check if conversion is done
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*
* \return The status of conversion
* \retval true The conversion is done
* \retval false The conversion is not done
*/
bool _adc_async_is_channel_conversion_done(const struct _adc_async_device *const device, const uint8_t channel);
/**
* \brief Make conversion
*
* \param[in] device The pointer to ADC device instance
*/
void _adc_async_convert(struct _adc_async_device *const device);
/**
* \brief Retrieve the conversion result
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*
* The result value
*/
uint16_t _adc_async_read_channel_data(const struct _adc_async_device *const device, const uint8_t channel);
/**
* \brief Set reference source
*
* \param[in] device The pointer to ADC device instance
* \param[in] reference A reference source to set
*/
void _adc_async_set_reference_source(struct _adc_async_device *const device, const adc_reference_t reference);
/**
* \brief Set resolution
*
* \param[in] device The pointer to ADC device instance
* \param[in] resolution A resolution to set
*/
void _adc_async_set_resolution(struct _adc_async_device *const device, const adc_resolution_t resolution);
/**
* \brief Set ADC input source of a channel
*
* \param[in] device The pointer to ADC device instance
* \param[in] pos_input A positive input source to set
* \param[in] neg_input A negative input source to set
* \param[in] channel Channel number
*/
void _adc_async_set_inputs(struct _adc_async_device *const device, const adc_pos_input_t pos_input,
const adc_neg_input_t neg_input, const uint8_t channel);
/**
* \brief Set conversion mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] mode A conversion mode to set
*/
void _adc_async_set_conversion_mode(struct _adc_async_device *const device, const enum adc_conversion_mode mode);
/**
* \brief Set differential mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
* \param[in] mode A differential mode to set
*/
void _adc_async_set_channel_differential_mode(struct _adc_async_device *const device, const uint8_t channel,
const enum adc_differential_mode mode);
/**
* \brief Set gain
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
* \param[in] gain A gain to set
*/
void _adc_async_set_channel_gain(struct _adc_async_device *const device, const uint8_t channel, const adc_gain_t gain);
/**
* \brief Set window mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] mode A mode to set
*/
void _adc_async_set_window_mode(struct _adc_async_device *const device, const adc_window_mode_t mode);
/**
* \brief Set lower threshold
*
* \param[in] device The pointer to ADC device instance
* \param[in] low_threshold A lower threshold to set
* \param[in] up_threshold An upper thresholds to set
*/
void _adc_async_set_thresholds(struct _adc_async_device *const device, const adc_threshold_t low_threshold,
const adc_threshold_t up_threshold);
/**
* \brief Retrieve threshold state
*
* \param[in] device The pointer to ADC device instance
* \param[out] state The threshold state
*/
void _adc_async_get_threshold_state(const struct _adc_async_device *const device, adc_threshold_status_t *const state);
/**
* \brief Enable/disable ADC channel interrupt
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
* \param[in] type The type of interrupt to disable/enable if applicable
* \param[in] state Enable or disable
*/
void _adc_async_set_irq_state(struct _adc_async_device *const device, const uint8_t channel,
const enum _adc_async_callback_type type, const bool state);
//@}
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* _HPL_ADC_ASYNC_H_INCLUDED */

View File

@ -0,0 +1,243 @@
/**
* \file
*
* \brief ADC related functionality declaration.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_ADC_DMA_H_INCLUDED
#define _HPL_ADC_DMA_H_INCLUDED
/**
* \addtogroup HPL ADC
*
* \section hpl_dma_adc_rev Revision History
* - v1.0.0 Initial Release
*
*@{
*/
#include <hpl_adc_sync.h>
#include <hpl_irq.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief ADC device structure
*
* The ADC device structure forward declaration.
*/
struct _adc_dma_device;
/**
* \brief ADC callback types
*/
enum _adc_dma_callback_type { ADC_DMA_DEVICE_COMPLETE_CB, ADC_DMA_DEVICE_ERROR_CB };
/**
* \brief ADC interrupt callbacks
*/
struct _adc_dma_callbacks {
void (*complete)(struct _adc_dma_device *device, const uint16_t data);
void (*error)(struct _adc_dma_device *device);
};
/**
* \brief ADC descriptor device structure
*/
struct _adc_dma_device {
struct _adc_dma_callbacks adc_dma_cb;
struct _irq_descriptor irq;
void * hw;
};
/**
* \name HPL functions
*/
//@{
/**
* \brief Initialize synchronous ADC
*
* This function does low level ADC configuration.
*
* param[in] device The pointer to ADC device instance
* param[in] hw The pointer to hardware instance
*
* \return Initialization status
*/
int32_t _adc_dma_init(struct _adc_dma_device *const device, void *const hw);
/**
* \brief Deinitialize ADC
*
* \param[in] device The pointer to ADC device instance
*/
void _adc_dma_deinit(struct _adc_dma_device *const device);
/**
* \brief Enable ADC peripheral
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*/
void _adc_dma_enable_channel(struct _adc_dma_device *const device, const uint8_t channel);
/**
* \brief Disable ADC peripheral
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*/
void _adc_dma_disable_channel(struct _adc_dma_device *const device, const uint8_t channel);
/**
* \brief Return address of ADC DMA source
*
* \param[in] device The pointer to ADC device instance
*
* \return ADC DMA source address
*/
uint32_t _adc_get_source_for_dma(struct _adc_dma_device *const device);
/**
* \brief Retrieve ADC conversion data size
*
* \param[in] device The pointer to ADC device instance
*
* \return The data size in bytes
*/
uint8_t _adc_dma_get_data_size(const struct _adc_dma_device *const device);
/**
* \brief Check if conversion is done
*
* \param[in] device The pointer to ADC device instance
*
* \return The status of conversion
* \retval true The conversion is done
* \retval false The conversion is not done
*/
bool _adc_dma_is_conversion_done(const struct _adc_dma_device *const device);
/**
* \brief Make conversion
*
* \param[in] device The pointer to ADC device instance
*/
void _adc_dma_convert(struct _adc_dma_device *const device);
/**
* \brief Set reference source
*
* \param[in] device The pointer to ADC device instance
* \param[in] reference A reference source to set
*/
void _adc_dma_set_reference_source(struct _adc_dma_device *const device, const adc_reference_t reference);
/**
* \brief Set resolution
*
* \param[in] device The pointer to ADC device instance
* \param[in] resolution A resolution to set
*/
void _adc_dma_set_resolution(struct _adc_dma_device *const device, const adc_resolution_t resolution);
/**
* \brief Set ADC input source of a channel
*
* \param[in] device The pointer to ADC device instance
* \param[in] pos_input A positive input source to set
* \param[in] neg_input A negative input source to set
* \param[in] channel Channel number
*/
void _adc_dma_set_inputs(struct _adc_dma_device *const device, const adc_pos_input_t pos_input,
const adc_neg_input_t neg_input, const uint8_t channel);
/**
* \brief Set conversion mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] mode A conversion mode to set
*/
void _adc_dma_set_conversion_mode(struct _adc_dma_device *const device, const enum adc_conversion_mode mode);
/**
* \brief Set differential mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
* \param[in] mode A differential mode to set
*/
void _adc_dma_set_channel_differential_mode(struct _adc_dma_device *const device, const uint8_t channel,
const enum adc_differential_mode mode);
/**
* \brief Set gain
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
* \param[in] gain A gain to set
*/
void _adc_dma_set_channel_gain(struct _adc_dma_device *const device, const uint8_t channel, const adc_gain_t gain);
/**
* \brief Set window mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] mode A mode to set
*/
void _adc_dma_set_window_mode(struct _adc_dma_device *const device, const adc_window_mode_t mode);
/**
* \brief Set thresholds
*
* \param[in] device The pointer to ADC device instance
* \param[in] low_threshold A lower thresholds to set
* \param[in] up_threshold An upper thresholds to set
*/
void _adc_dma_set_thresholds(struct _adc_dma_device *const device, const adc_threshold_t low_threshold,
const adc_threshold_t up_threshold);
/**
* \brief Retrieve threshold state
*
* \param[in] device The pointer to ADC device instance
* \param[out] state The threshold state
*/
void _adc_dma_get_threshold_state(const struct _adc_dma_device *const device, adc_threshold_status_t *const state);
//@}
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* _HPL_ADC_DMA_H_INCLUDED */

View File

@ -0,0 +1,271 @@
/**
* \file
*
* \brief ADC related functionality declaration.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_ADC_SYNC_H_INCLUDED
#define _HPL_ADC_SYNC_H_INCLUDED
/**
* \addtogroup HPL ADC
*
* \section hpl_adc_sync_rev Revision History
* - v1.0.0 Initial Release
*
*@{
*/
#include "compiler.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief ADC reference source
*/
typedef uint8_t adc_reference_t;
/**
* \brief ADC resolution
*/
typedef uint8_t adc_resolution_t;
/**
* \brief ADC positive input for channel
*/
typedef uint8_t adc_pos_input_t;
/**
* \brief ADC negative input for channel
*/
typedef uint8_t adc_neg_input_t;
/**
* \brief ADC threshold
*/
typedef uint16_t adc_threshold_t;
/**
* \brief ADC gain
*/
typedef uint8_t adc_gain_t;
/**
* \brief ADC conversion mode
*/
enum adc_conversion_mode { ADC_CONVERSION_MODE_SINGLE_CONVERSION = 0, ADC_CONVERSION_MODE_FREERUN };
/**
* \brief ADC differential mode
*/
enum adc_differential_mode { ADC_DIFFERENTIAL_MODE_SINGLE_ENDED = 0, ADC_DIFFERENTIAL_MODE_DIFFERENTIAL };
/**
* \brief ADC window mode
*/
typedef uint8_t adc_window_mode_t;
/**
* \brief ADC threshold status
*/
typedef bool adc_threshold_status_t;
/**
* \brief ADC sync descriptor device structure
*/
struct _adc_sync_device {
void *hw;
};
/**
* \name HPL functions
*/
//@{
/**
* \brief Initialize synchronous ADC
*
* This function does low level ADC configuration.
*
* param[in] device The pointer to ADC device instance
* param[in] hw The pointer to hardware instance
*
* \return Initialization status
*/
int32_t _adc_sync_init(struct _adc_sync_device *const device, void *const hw);
/**
* \brief Deinitialize ADC
*
* \param[in] device The pointer to ADC device instance
*/
void _adc_sync_deinit(struct _adc_sync_device *const device);
/**
* \brief Enable ADC
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*/
void _adc_sync_enable_channel(struct _adc_sync_device *const device, const uint8_t channel);
/**
* \brief Disable ADC
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*/
void _adc_sync_disable_channel(struct _adc_sync_device *const device, const uint8_t channel);
/**
* \brief Retrieve ADC conversion data size
*
* \param[in] device The pointer to ADC device instance
*
* \return The data size in bytes
*/
uint8_t _adc_sync_get_data_size(const struct _adc_sync_device *const device);
/**
* \brief Check if conversion is done
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*
* \return The status of conversion
* \retval true The conversion is done
* \retval false The conversion is not done
*/
bool _adc_sync_is_channel_conversion_done(const struct _adc_sync_device *const device, const uint8_t channel);
/**
* \brief Make conversion
*
* \param[in] device The pointer to ADC device instance
*/
void _adc_sync_convert(struct _adc_sync_device *const device);
/**
* \brief Retrieve the conversion result
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
*
* \return The result value of channel
*/
uint16_t _adc_sync_read_channel_data(const struct _adc_sync_device *const device, const uint8_t channel);
/**
* \brief Set reference source
*
* \param[in] device The pointer to ADC device instance
* \param[in] reference A reference source to set
*/
void _adc_sync_set_reference_source(struct _adc_sync_device *const device, const adc_reference_t reference);
/**
* \brief Set resolution
*
* \param[in] device The pointer to ADC device instance
* \param[in] resolution A resolution to set
*/
void _adc_sync_set_resolution(struct _adc_sync_device *const device, const adc_resolution_t resolution);
/**
* \brief Set ADC input source of a channel
*
* \param[in] device The pointer to ADC device instance
* \param[in] pos_input A positive input source to set
* \param[in] neg_input A negative input source to set
* \param[in] channel Channel number
*/
void _adc_sync_set_inputs(struct _adc_sync_device *const device, const adc_pos_input_t pos_input,
const adc_neg_input_t neg_input, const uint8_t channel);
/**
* \brief Set conversion mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] mode A conversion mode to set
*/
void _adc_sync_set_conversion_mode(struct _adc_sync_device *const device, const enum adc_conversion_mode mode);
/**
* \brief Set differential mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
* \param[in] mode A differential mode to set
*/
void _adc_sync_set_channel_differential_mode(struct _adc_sync_device *const device, const uint8_t channel,
const enum adc_differential_mode mode);
/**
* \brief Set gain
*
* \param[in] device The pointer to ADC device instance
* \param[in] channel Channel number
* \param[in] gain A gain to set
*/
void _adc_sync_set_channel_gain(struct _adc_sync_device *const device, const uint8_t channel, const adc_gain_t gain);
/**
* \brief Set window mode
*
* \param[in] device The pointer to ADC device instance
* \param[in] mode A mode to set
*/
void _adc_sync_set_window_mode(struct _adc_sync_device *const device, const adc_window_mode_t mode);
/**
* \brief Set threshold
*
* \param[in] device The pointer to ADC device instance
* \param[in] low_threshold A lower threshold to set
* \param[in] up_threshold An upper thresholds to set
*/
void _adc_sync_set_thresholds(struct _adc_sync_device *const device, const adc_threshold_t low_threshold,
const adc_threshold_t up_threshold);
/**
* \brief Retrieve threshold state
*
* \param[in] device The pointer to ADC device instance
* \param[out] state The threshold state
*/
void _adc_sync_get_threshold_state(const struct _adc_sync_device *const device, adc_threshold_status_t *const state);
//@}
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* _HPL_ADC_SYNC_H_INCLUDED */

View File

@ -0,0 +1,69 @@
/**
* \file
*
* \brief Custom Control Logic functionality declaration.
*
* Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_CUSTOM_LOGIC_H_INCLUDED
#define _HPL_CUSTOM_LOGIC_H_INCLUDED
#include <compiler.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Initialize the custom logic hardware
* \return Initialization operation status
*/
int32_t _custom_logic_init(void);
/**
* \brief Disable and reset the custom logic hardware
*/
void _custom_logic_deinit(void);
/**
* \brief Enable the custom logic hardware
* \return Initialization operation status
*/
int32_t _custom_logic_enable(void);
/**
* \brief Disable the custom logic hardware
*/
void _custom_logic_disable(void);
#ifdef __cplusplus
}
#endif
#endif /* _HPL_CUSTOM_LOGIC_H_INCLUDED */

View File

@ -0,0 +1,176 @@
/**
* \file
*
* \brief DMA related functionality declaration.
*
* Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_DMA_H_INCLUDED
#define _HPL_DMA_H_INCLUDED
/**
* \addtogroup HPL DMA
*
* \section hpl_dma_rev Revision History
* - v1.0.0 Initial Release
*
*@{
*/
#include <compiler.h>
#include <hpl_irq.h>
#ifdef __cplusplus
extern "C" {
#endif
struct _dma_resource;
/**
* \brief DMA callback types
*/
enum _dma_callback_type { DMA_TRANSFER_COMPLETE_CB, DMA_TRANSFER_ERROR_CB };
/**
* \brief DMA interrupt callbacks
*/
struct _dma_callbacks {
void (*transfer_done)(struct _dma_resource *resource);
void (*error)(struct _dma_resource *resource);
};
/**
* \brief DMA resource structure
*/
struct _dma_resource {
struct _dma_callbacks dma_cb;
void * back;
};
/**
* \brief Initialize DMA
*
* This function does low level DMA configuration.
*
* \return initialize status
*/
int32_t _dma_init(void);
/**
* \brief Set destination address
*
* \param[in] channel DMA channel to set destination address for
* \param[in] dst Destination address
*
* \return setting status
*/
int32_t _dma_set_destination_address(const uint8_t channel, const void *const dst);
/**
* \brief Set source address
*
* \param[in] channel DMA channel to set source address for
* \param[in] src Source address
*
* \return setting status
*/
int32_t _dma_set_source_address(const uint8_t channel, const void *const src);
/**
* \brief Set next descriptor address
*
* \param[in] current_channel Current DMA channel to set next descriptor address
* \param[in] next_channel Next DMA channel used as next descriptor
*
* \return setting status
*/
int32_t _dma_set_next_descriptor(const uint8_t current_channel, const uint8_t next_channel);
/**
* \brief Enable/disable source address incrementation during DMA transaction
*
* \param[in] channel DMA channel to set source address for
* \param[in] enable True to enable, false to disable
*
* \return status of operation
*/
int32_t _dma_srcinc_enable(const uint8_t channel, const bool enable);
/**
* \brief Enable/disable Destination address incrementation during DMA transaction
*
* \param[in] channel DMA channel to set destination address for
* \param[in] enable True to enable, false to disable
*
* \return status of operation
*/
int32_t _dma_dstinc_enable(const uint8_t channel, const bool enable);
/**
* \brief Set the amount of data to be transfered per transaction
*
* \param[in] channel DMA channel to set data amount for
* \param[in] amount Data amount
*
* \return status of operation
*/
int32_t _dma_set_data_amount(const uint8_t channel, const uint32_t amount);
/**
* \brief Trigger DMA transaction on the given channel
*
* \param[in] channel DMA channel to trigger transaction on
*
* \return status of operation
*/
int32_t _dma_enable_transaction(const uint8_t channel, const bool software_trigger);
/**
* \brief Retrieves DMA resource structure
*
* \param[out] resource The resource to be retrieved
* \param[in] channel DMA channel to retrieve structure for
*
* \return status of operation
*/
int32_t _dma_get_channel_resource(struct _dma_resource **resource, const uint8_t channel);
/**
* \brief Enable/disable DMA interrupt
*
* \param[in] channel DMA channel to enable/disable interrupt for
* \param[in] type The type of interrupt to disable/enable if applicable
* \param[in] state Enable or disable
*/
void _dma_set_irq_state(const uint8_t channel, const enum _dma_callback_type type, const bool state);
#ifdef __cplusplus
}
#endif
#endif /* HPL_DMA_H_INCLUDED */

View File

@ -0,0 +1,95 @@
/**
* \file
*
* \brief External IRQ related functionality declaration.
*
* Copyright (c) 2015-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_EXT_IRQ_H_INCLUDED
#define _HPL_EXT_IRQ_H_INCLUDED
/**
* \addtogroup HPL EXT IRQ
*
* \section hpl_ext_irq_rev Revision History
* - v1.0.0 Initial Release
*
*@{
*/
#include <compiler.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \name HPL functions
*/
//@{
/**
* \brief Initialize external interrupt module
*
* This function does low level external interrupt configuration.
*
* \param[in] cb The pointer to callback function from external interrupt
*
* \return Initialization status.
* \retval -1 External irq module is already initialized
* \retval 0 The initialization is completed successfully
*/
int32_t _ext_irq_init(void (*cb)(const uint32_t pin));
/**
* \brief Deinitialize external interrupt module
*
* \return Initialization status.
* \retval -1 External irq module is already deinitialized
* \retval 0 The de-initialization is completed successfully
*/
int32_t _ext_irq_deinit(void);
/**
* \brief Enable / disable external irq
*
* \param[in] pin Pin to enable external irq on
* \param[in] enable True to enable, false to disable
*
* \return Status of external irq enabling / disabling
* \retval -1 External irq module can't be enabled / disabled
* \retval 0 External irq module is enabled / disabled successfully
*/
int32_t _ext_irq_enable(const uint32_t pin, const bool enable);
//@}
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* _HPL_EXT_IRQ_H_INCLUDED */

View File

@ -0,0 +1,193 @@
/**
* \file
*
* \brief PWM related functionality declaration.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_PWM_H_INCLUDED
#define _HPL_PWM_H_INCLUDED
/**
* \addtogroup HPL PWM
*
* \section hpl_pwm_rev Revision History
* - v1.0.0 Initial Release
*
*@{
*/
#include <compiler.h>
#include "hpl_irq.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief PWM callback types
*/
enum _pwm_callback_type { PWM_DEVICE_PERIOD_CB, PWM_DEVICE_ERROR_CB };
/**
* \brief PWM pulse-width period
*/
typedef uint32_t pwm_period_t;
/**
* \brief PWM device structure
*
* The PWM device structure forward declaration.
*/
struct _pwm_device;
/**
* \brief PWM interrupt callbacks
*/
struct _pwm_callback {
void (*pwm_period_cb)(struct _pwm_device *device);
void (*pwm_error_cb)(struct _pwm_device *device);
};
/**
* \brief PWM descriptor device structure
*/
struct _pwm_device {
struct _pwm_callback callback;
struct _irq_descriptor irq;
void * hw;
};
/**
* \brief PWM functions, pointers to low-level functions
*/
struct _pwm_hpl_interface {
int32_t (*init)(struct _pwm_device *const device, void *const hw);
void (*deinit)(struct _pwm_device *const device);
void (*start_pwm)(struct _pwm_device *const device);
void (*stop_pwm)(struct _pwm_device *const device);
void (*set_pwm_param)(struct _pwm_device *const device, const pwm_period_t period, const pwm_period_t duty_cycle);
bool (*is_pwm_enabled)(const struct _pwm_device *const device);
pwm_period_t (*pwm_get_period)(const struct _pwm_device *const device);
uint32_t (*pwm_get_duty)(const struct _pwm_device *const device);
void (*set_irq_state)(struct _pwm_device *const device, const enum _pwm_callback_type type, const bool disable);
};
/**
* \brief Initialize TC
*
* This function does low level TC configuration.
*
* \param[in] device The pointer to PWM device instance
* \param[in] hw The pointer to hardware instance
*
* \return Initialization status.
*/
int32_t _pwm_init(struct _pwm_device *const device, void *const hw);
/**
* \brief Deinitialize TC
*
* \param[in] device The pointer to PWM device instance
*/
void _pwm_deinit(struct _pwm_device *const device);
/**
* \brief Retrieve offset of the given tc hardware instance
*
* \param[in] device The pointer to PWM device instance
*
* \return The offset of the given tc hardware instance
*/
uint8_t _pwm_get_hardware_offset(const struct _pwm_device *const device);
/**
* \brief Start hardware pwm
*
* \param[in] device The pointer to PWM device instance
*/
void _pwm_enable(struct _pwm_device *const device);
/**
* \brief Stop hardware pwm
*
* \param[in] device The pointer to PWM device instance
*/
void _pwm_disable(struct _pwm_device *const device);
/**
* \brief Set pwm parameter
*
* \param[in] device The pointer to PWM device instance
* \param[in] period Total period of one PWM cycle.
* \param[in] duty_cycle Period of PWM first half during one cycle.
*/
void _pwm_set_param(struct _pwm_device *const device, const pwm_period_t period, const pwm_period_t duty_cycle);
/**
* \brief Check if pwm is working
*
* \param[in] device The pointer to PWM device instance
*
* \return Check status.
* \retval true The given pwm is working
* \retval false The given pwm is not working
*/
bool _pwm_is_enabled(const struct _pwm_device *const device);
/**
* \brief Get pwm waveform period value
*
* \param[in] device The pointer to PWM device instance
*
* \return Period value.
*/
pwm_period_t _pwm_get_period(const struct _pwm_device *const device);
/**
* \brief Get pwm waveform duty cycle value
*
* \param[in] device The pointer to PWM device instance
*
* \return Duty cycle value
*/
uint32_t _pwm_get_duty(const struct _pwm_device *const device);
/**
* \brief Enable/disable PWM interrupt
*
* param[in] device The pointer to PWM device instance
* param[in] type The type of interrupt to disable/enable if applicable
* param[in] disable Enable or disable
*/
void _pwm_set_irq_state(struct _pwm_device *const device, const enum _pwm_callback_type type, const bool disable);
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* _HPL_PWM_H_INCLUDED */

View File

@ -0,0 +1,149 @@
/**
* \file
*
* \brief Quad SPI related functionality declaration.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_QSPI_H_INCLUDED
#define _HPL_QSPI_H_INCLUDED
#include "compiler.h"
/**
* \addtogroup hpl_qspi HPL QSPI
*
*@{
*/
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Qspi access modes
*/
enum qspi_access {
/* Read access */
QSPI_READ_ACCESS = 0,
/* Read memory access */
QSPI_READMEM_ACCESS,
/* Write access */
QSPI_WRITE_ACCESS,
/* Write memory access */
QSPI_WRITEMEM_ACCESS
};
/**
* \brief QSPI command instruction/address/data width
*/
enum qspi_cmd_width {
/** Instruction: Single-bit, Address: Single-bit, Data: Single-bit */
QSPI_INST1_ADDR1_DATA1,
/** Instruction: Single-bit, Address: Single-bit, Data: Dual-bit */
QSPI_INST1_ADDR1_DATA2,
/** Instruction: Single-bit, Address: Single-bit, Data: Quad-bit */
QSPI_INST1_ADDR1_DATA4,
/** Instruction: Single-bit, Address: Dual-bit, Data: Dual-bit */
QSPI_INST1_ADDR2_DATA2,
/** Instruction: Single-bit, Address: Quad-bit, Data: Quad-bit */
QSPI_INST1_ADDR4_DATA4,
/** Instruction: Dual-bit, Address: Dual-bit, Data: Dual-bit */
QSPI_INST2_ADDR2_DATA2,
/** Instruction: Quad-bit, Address: Quad-bit, Data: Quad-bit */
QSPI_INST4_ADDR4_DATA4
};
/**
* \brief QSPI command option code length in bits
*/
enum qspi_cmd_opt_len {
/** The option code is 1 bit long */
QSPI_OPT_1BIT,
/** The option code is 2 bits long */
QSPI_OPT_2BIT,
/** The option code is 4 bits long */
QSPI_OPT_4BIT,
/** The option code is 8 bits long */
QSPI_OPT_8BIT
};
/**
* \brief Qspi command structure
*/
struct _qspi_command {
union {
struct {
/* Width of QSPI Addr , inst data */
uint32_t width : 3;
/* Reserved */
uint32_t reserved0 : 1;
/* Enable Instruction */
uint32_t inst_en : 1;
/* Enable Address */
uint32_t addr_en : 1;
/* Enable Option */
uint32_t opt_en : 1;
/* Enable Data */
uint32_t data_en : 1;
/* Option Length */
uint32_t opt_len : 2;
/* Address Length */
uint32_t addr_len : 1;
/* Option Length */
uint32_t reserved1 : 1;
/* Transfer type */
uint32_t tfr_type : 2;
/* Continuous read mode */
uint32_t continues_read : 1;
/* Enable Double Data Rate */
uint32_t ddr_enable : 1;
/* Dummy Cycles Length */
uint32_t dummy_cycles : 5;
/* Reserved */
uint32_t reserved3 : 11;
} bits;
uint32_t word;
} inst_frame;
uint8_t instruction;
uint8_t option;
uint32_t address;
size_t buf_len;
const void *tx_buf;
void * rx_buf;
};
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* ifndef _HPL_QSPI_H_INCLUDED */

View File

@ -0,0 +1,146 @@
/**
* \file
*
* \brief Quad SPI dma related functionality declaration.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_QSPI_DMA_H_INCLUDED
#define _HPL_QSPI_DMA_H_INCLUDED
#include <hpl_qspi.h>
#include "hpl_irq.h"
#include "hpl_dma.h"
/**
* \addtogroup hpl_qspi_dma HPL QSPI
*
*@{
*/
#ifdef __cplusplus
extern "C" {
#endif
/** The callback types */
enum _qspi_dma_cb_type {
/** Callback type for DMA transfer done */
QSPI_DMA_CB_XFER_DONE,
/** Callback type for DMA errors */
QSPI_DMA_CB_ERROR,
};
/**
* \brief QSPI DMA callback type
*/
typedef void (*_qspi_dma_cb_t)(struct _dma_resource *resource);
/**
* \brief The callbacks offered by QSPI driver
*/
struct _qspi_dma_callbacks {
_qspi_dma_cb_t xfer_done;
_qspi_dma_cb_t error;
};
/**
* QSPI dma driver instance.
*/
struct _qspi_dma_dev {
/** Pointer to private data or hardware base */
void *prvt;
/**
* Pointer to the callback functions so that initialize the driver to
* handle interrupts.
*/
struct _qspi_dma_callbacks cb;
/** DMA resource */
struct _dma_resource *resource;
};
/**
* \brief Initialize QSPI for access without interrupts
* It will load default hardware configuration and software struct.
* \param[in, out] dev Pointer to the QSPI device instance.
* \param[in] hw Pointer to the hardware base.
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_dma_init(struct _qspi_dma_dev *dev, void *const hw);
/**
* \brief Deinitialize QSPI
* Disable, reset the hardware and the software struct.
* \param[in, out] dev Pointer to the QSPI device instance.
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_dma_deinit(struct _qspi_dma_dev *dev);
/**
* \brief Enable QSPI for access without interrupts
* \param[in, out] dev Pointer to the QSPI device instance.
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_dma_enable(struct _qspi_dma_dev *dev);
/**
* \brief Disable QSPI for access without interrupts
* \param[in, out] dev Pointer to the QSPI device instance.
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_dma_disable(struct _qspi_dma_dev *dev);
/**
* \brief Execute command in Serial Memory Mode.
*
* \param[in] dev The pointer to QSPI device instance
* \param[in] cmd The pointer to the command information
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_dma_serial_run_command(struct _qspi_dma_dev *dev, const struct _qspi_command *cmd);
/**
* \brief Register the QSPI device callback
* \param[in] dev Pointer to the SPI device instance.
* \param[in] type The callback type.
* \param[in] cb The callback function to register. NULL to disable callback.
* \return Always 0.
*/
void _qspi_dma_register_callback(struct _qspi_dma_dev *dev, const enum _qspi_dma_cb_type type, _qspi_dma_cb_t cb);
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* ifndef _HPL_QSPI_DMA_H_INCLUDED */

View File

@ -0,0 +1,105 @@
/**
* \file
*
* \brief Quad SPI Sync related functionality declaration.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_QSPI_SYNC_H_INCLUDED
#define _HPL_QSPI_SYNC_H_INCLUDED
#include <hpl_qspi.h>
/**
* \addtogroup hpl_qspi HPL QSPI
*
*@{
*/
#ifdef __cplusplus
extern "C" {
#endif
/** Quad SPI polling driver instance. */
struct _qspi_sync_dev {
/** Pointer to private data or hardware base */
void *prvt;
};
/**
* \brief Initialize QSPI for access without interrupts
* It will load default hardware configuration and software struct.
* \param[in, out] dev Pointer to the QSPI device instance.
* \param[in] hw Pointer to the hardware base.
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_sync_init(struct _qspi_sync_dev *dev, void *const hw);
/**
* \brief Deinitialize QSPI
* Disable, reset the hardware and the software struct.
* \param[in, out] dev Pointer to the QSPI device instance.
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_sync_deinit(struct _qspi_sync_dev *dev);
/**
* \brief Enable QSPI for access without interrupts
* \param[in, out] dev Pointer to the QSPI device instance.
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_sync_enable(struct _qspi_sync_dev *dev);
/**
* \brief Disable QSPI for access without interrupts
* \param[in, out] dev Pointer to the QSPI device instance.
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_sync_disable(struct _qspi_sync_dev *dev);
/**
* \brief Execute command in Serial Memory Mode.
*
* \param[in] dev The pointer to QSPI device instance
* \param[in] cmd The pointer to the command information
* \return Operation status.
* \retval ERR_NONE Operation done successfully.
*/
int32_t _qspi_sync_serial_run_command(struct _qspi_sync_dev *dev, const struct _qspi_command *cmd);
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* ifndef _HPL_QSPI_SYNC_H_INCLUDED */

View File

@ -0,0 +1,88 @@
/**
* \file
*
* \brief Common SPI DMA related functionality declaration.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_SPI_DMA_H_INCLUDED
#define _HPL_SPI_DMA_H_INCLUDED
#include <hpl_irq.h>
#include <hpl_dma.h>
#ifdef __cplusplus
extern "C" {
#endif
/** The callback types */
enum _spi_dma_dev_cb_type {
/** Callback type for DMA transmit. */
SPI_DEV_CB_DMA_TX,
/** Callback type for DMA receive. */
SPI_DEV_CB_DMA_RX,
/** Callback type for DMA error. */
SPI_DEV_CB_DMA_ERROR,
/** Number of callbacks. */
SPI_DEV_CB_DMA_N
};
struct _spi_dma_dev;
/**
* \brief The prototype for callback on SPI DMA.
*/
typedef void (*_spi_dma_cb_t)(struct _dma_resource *resource);
/**
* \brief The callbacks offered by SPI driver
*/
struct _spi_dma_dev_callbacks {
_spi_dma_cb_t tx;
_spi_dma_cb_t rx;
_spi_dma_cb_t error;
};
/** SPI driver to support DMA HAL */
struct _spi_dma_dev {
/** Pointer to the hardware base or private data for special device. */
void *prvt;
/** Pointer to callback functions */
struct _spi_dma_dev_callbacks callbacks;
/** IRQ instance for SPI device. */
struct _irq_descriptor irq;
/** DMA resource */
struct _dma_resource *resource;
};
#ifdef __cplusplus
}
#endif
#endif /* ifndef _HPL_SPI_DMA_H_INCLUDED */

View File

@ -0,0 +1,160 @@
/**
* \file
*
* \brief Timer related functionality declaration.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#ifndef _HPL_TIMER_H_INCLUDED
#define _HPL_TIMER_H_INCLUDED
/**
* \addtogroup HPL Timer
*
* \section hpl_timer_rev Revision History
* - v1.0.0 Initial Release
*
*@{
*/
#include <compiler.h>
#include <hpl_irq.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Timer device structure
*
* The Timer device structure forward declaration.
*/
struct _timer_device;
/**
* \brief Timer interrupt callbacks
*/
struct _timer_callbacks {
void (*period_expired)(struct _timer_device *device);
};
/**
* \brief Timer device structure
*/
struct _timer_device {
struct _timer_callbacks timer_cb;
struct _irq_descriptor irq;
void * hw;
};
/**
* \brief Timer functions, pointers to low-level functions
*/
struct _timer_hpl_interface {
int32_t (*init)(struct _timer_device *const device, void *const hw);
void (*deinit)(struct _timer_device *const device);
void (*start_timer)(struct _timer_device *const device);
void (*stop_timer)(struct _timer_device *const device);
void (*set_timer_period)(struct _timer_device *const device, const uint32_t clock_cycles);
uint32_t (*get_period)(const struct _timer_device *const device);
bool (*is_timer_started)(const struct _timer_device *const device);
void (*set_timer_irq)(struct _timer_device *const device);
};
/**
* \brief Initialize TCC
*
* This function does low level TCC configuration.
*
* \param[in] device The pointer to timer device instance
* \param[in] hw The pointer to hardware instance
*
* \return Initialization status.
*/
int32_t _timer_init(struct _timer_device *const device, void *const hw);
/**
* \brief Deinitialize TCC
*
* \param[in] device The pointer to timer device instance
*/
void _timer_deinit(struct _timer_device *const device);
/**
* \brief Start hardware timer
*
* \param[in] device The pointer to timer device instance
*/
void _timer_start(struct _timer_device *const device);
/**
* \brief Stop hardware timer
*
* \param[in] device The pointer to timer device instance
*/
void _timer_stop(struct _timer_device *const device);
/**
* \brief Set timer period
*
* \param[in] device The pointer to timer device instance
*/
void _timer_set_period(struct _timer_device *const device, const uint32_t clock_cycles);
/**
* \brief Retrieve timer period
*
* \param[in] device The pointer to timer device instance
*
* \return Timer period
*/
uint32_t _timer_get_period(const struct _timer_device *const device);
/**
* \brief Check if timer is running
*
* \param[in] device The pointer to timer device instance
*
* \return Check status.
* \retval true The given timer is running
* \retval false The given timer is not running
*/
bool _timer_is_started(const struct _timer_device *const device);
/**
* \brief Set timer IRQ
*
* \param[in] device The pointer to timer device instance
*/
void _timer_set_irq(struct _timer_device *const device);
#ifdef __cplusplus
}
#endif
/**@}*/
#endif /* _HPL_TIMER_H_INCLUDED */

View File

@ -0,0 +1,244 @@
/**
* \file
*
* \brief ADC functionality implementation.
*
* Copyright (c) 2014-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
/**
* \brief Indicates HAL being compiled. Must be defined before including.
*/
#define _COMPILING_HAL
#include "hal_adc_sync.h"
#include <utils_assert.h>
/**
* \brief Driver version
*/
#define DRIVER_VERSION 0x00000001u
/**
* \brief Maximum amount of ADC interface instances
*/
#define MAX_ADC_AMOUNT ADC_INST_NUM
/**
* \brief Initialize ADC
*/
int32_t adc_sync_init(struct adc_sync_descriptor *const descr, void *const hw, void *const func)
{
ASSERT(descr && hw);
return _adc_sync_init(&descr->device, hw);
}
/**
* \brief Deinitialize ADC
*/
int32_t adc_sync_deinit(struct adc_sync_descriptor *const descr)
{
ASSERT(descr);
_adc_sync_deinit(&descr->device);
return ERR_NONE;
}
/**
* \brief Enable ADC
*/
int32_t adc_sync_enable_channel(struct adc_sync_descriptor *const descr, const uint8_t channel)
{
ASSERT(descr);
_adc_sync_enable_channel(&descr->device, channel);
return ERR_NONE;
}
/**
* \brief Disable ADC
*/
int32_t adc_sync_disable_channel(struct adc_sync_descriptor *const descr, const uint8_t channel)
{
ASSERT(descr);
_adc_sync_disable_channel(&descr->device, channel);
return ERR_NONE;
}
/*
* \brief Read data from ADC
*/
int32_t adc_sync_read_channel(struct adc_sync_descriptor *const descr, const uint8_t channel, uint8_t *const buffer,
const uint16_t length)
{
uint8_t data_size;
uint16_t offset = 0;
ASSERT(descr && buffer && length);
data_size = _adc_sync_get_data_size(&descr->device);
ASSERT(!(length % data_size));
do {
uint16_t result;
_adc_sync_convert(&descr->device);
while (!_adc_sync_is_channel_conversion_done(&descr->device, channel))
;
result = _adc_sync_read_channel_data(&descr->device, channel);
buffer[offset] = result;
if (1 < data_size) {
buffer[offset + 1] = result >> 8;
}
offset += data_size;
} while (offset < length);
return offset;
}
/**
* \brief Set ADC reference source
*/
int32_t adc_sync_set_reference(struct adc_sync_descriptor *const descr, const adc_reference_t reference)
{
ASSERT(descr);
_adc_sync_set_reference_source(&descr->device, reference);
return ERR_NONE;
}
/**
* \brief Set ADC resolution
*/
int32_t adc_sync_set_resolution(struct adc_sync_descriptor *const descr, const adc_resolution_t resolution)
{
ASSERT(descr);
_adc_sync_set_resolution(&descr->device, resolution);
return ERR_NONE;
}
/**
* \brief Set ADC input source of a channel
*/
int32_t adc_sync_set_inputs(struct adc_sync_descriptor *const descr, const adc_pos_input_t pos_input,
const adc_neg_input_t neg_input, const uint8_t channel)
{
ASSERT(descr);
_adc_sync_set_inputs(&descr->device, pos_input, neg_input, channel);
return ERR_NONE;
}
/**
* \brief Set ADC thresholds
*/
int32_t adc_sync_set_thresholds(struct adc_sync_descriptor *const descr, const adc_threshold_t low_threshold,
const adc_threshold_t up_threshold)
{
ASSERT(descr);
_adc_sync_set_thresholds(&descr->device, low_threshold, up_threshold);
return ERR_NONE;
}
/**
* \brief Set ADC gain
*/
int32_t adc_sync_set_channel_gain(struct adc_sync_descriptor *const descr, const uint8_t channel, const adc_gain_t gain)
{
ASSERT(descr);
_adc_sync_set_channel_gain(&descr->device, channel, gain);
return ERR_NONE;
}
/**
* \brief Set ADC conversion mode
*/
int32_t adc_sync_set_conversion_mode(struct adc_sync_descriptor *const descr, const enum adc_conversion_mode mode)
{
ASSERT(descr);
_adc_sync_set_conversion_mode(&descr->device, mode);
return ERR_NONE;
}
/**
* \brief Set ADC differential mode
*/
int32_t adc_sync_set_channel_differential_mode(struct adc_sync_descriptor *const descr, const uint8_t channel,
const enum adc_differential_mode mode)
{
ASSERT(descr);
_adc_sync_set_channel_differential_mode(&descr->device, channel, mode);
return ERR_NONE;
}
/**
* \brief Set ADC window mode
*/
int32_t adc_sync_set_window_mode(struct adc_sync_descriptor *const descr, const adc_window_mode_t mode)
{
ASSERT(descr);
_adc_sync_set_window_mode(&descr->device, mode);
return ERR_NONE;
}
/**
* \brief Retrieve threshold state
*/
int32_t adc_sync_get_threshold_state(const struct adc_sync_descriptor *const descr, adc_threshold_status_t *const state)
{
ASSERT(descr && state);
_adc_sync_get_threshold_state(&descr->device, state);
return ERR_NONE;
}
/**
* \brief Check if conversion is complete
*/
int32_t adc_sync_is_channel_conversion_complete(const struct adc_sync_descriptor *const descr, const uint8_t channel)
{
ASSERT(descr);
return _adc_sync_is_channel_conversion_done(&descr->device, channel);
}
/**
* \brief Retrieve the current driver version
*/
uint32_t adc_sync_get_version(void)
{
return DRIVER_VERSION;
}
//@}

Some files were not shown because too many files have changed in this diff Show More